Electronic Supplementary Information (ESI) For

Three Zn(II) Coordination Polymers Constructed with a New

Amide-thiophene-derived Bis-pyridyl Ligand as Ultrasensitive

Luminescent Sensors for Hg(II) and Purines

Xiuli Wang*a, Jianxin Maa,b, Na Xua, Yue Wanga, Jiayu Suna, and Guocheng Liua

^a College of Chemistry and Materials Engineering, Bohai University, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, P. R. China

b School of Materials science and Engineering, Changchun University of Science and Technology, Changchun 130022, P. R. China

S1. X-ray Crystallography

The single-crystal diffraction data for LCPs **1-3** were collected by using a Bruker SMART APEXII CCD diffractometer at 293 K with Mo $K\alpha$ radiation ($\lambda = 0.71073$ Å). The structures were solved by direct methods and refined by full matrix least-squares on F^2 employing the OLEX2 program.¹ All crystal data and detailed structural refinement results are summarized in Table S1, and selected bond lengths (Å) and angles (°) are listed in Table S2. The single crystal data for LCPs **1-3** have been obtained in the Cambridge Crystallographic Data Center (CCDC no: 2060451, 2089164, and 2089165).

Materials and methods

All chemicals and reagents were purchased from commercial sources and used as received except for 4-bpft (Scheme 1). The single-crystal diffraction data for LCPs 1– **3** were collected by using a Bruker SMART APEXII CCD diffractometer at 293 K with Mo $K\alpha$ radiation ($\lambda = 0.71073$ Å). The powder X-ray diffraction (D/teX Ultra diffractometer) and the infrared spectra (Varian 640 FTIR spectrometer) were measured to confirm the structures of LCPs 1–3. The fluorescent spectra were recorded on a Hitachi F-4500 luminescence/phosphorescence spectrometer. UV–vis absorption spectra were obtained by PerkinElmer Lambda 750. With a FLS1000 transient steady-state fluorescence spectrometer, the fluorescence lifetime could be obtained. The ¹H NMR spectra was recorded on Agilent 400-MR spectrometer using DMSO- d_6 as a solvent.

LCP	LCP 1	LCP 2	LCP 3
CCDC	2060451	2089164	2089165
Empirical formula	$C_{52}H_{44}Zn_2N_8O_{14}S_2$	$C_{27}H_{22}ZnN_4O_6S$	$C_{26}H_{20}ZnN_4O_7S$
Formula weight	1199.81	595.91	597.89
Crystal system	Triclinic	Triclinic	Triclinic
Space group	$P\overline{1}$	Pī	Pī
<i>a</i> (Å)	11.9101(5)	10.0385(10)	9.8851(8)
<i>b</i> (Å)	14.8958(6)	11.1557(12)	10.8960(8)
<i>c</i> (Å)	16.5644(7)	12.4792(13)	12.2041(10)
α (°)	106.2430(10)	79.339(2)	82.082(2)
$\beta(^{\circ})$	109.7700(10)	80.212(2)	80.528(2)
γ (°)	96.0220(10)	68.539(2)	68.643(2)
V(Å ³)	2589.55(19)	1270.1(2)	1203.18(17)
Ζ	2	2	2
D_{calc} (g/cm ³)	1.539	1.558	1.650
μ/mm^{-1}	1.083	1.101	1.165
<i>F</i> (000)	1232	612	612
$R_{\rm int}$	0.0167	0.0229	0.0317
$R_1^a[I > 2\sigma(I)]$	0.0419	0.0409	0.0406
wR_2^{b} (all data)	0.1077	0.1031	0.0842
GOF	1.018	1.021	1.004
$\Delta \rho_{\rm max}({\rm e}\cdot{\rm \AA}^{-3})$	1.334 and -0.620	0.639 and -0.658	0.356 and -0.395

 Table S1. Crystallographic data for LCPs 1-3.

 ${}^{a}R_{1} = \sum |F_{o}| - |F_{c}| / \sum |F_{o}|. \ {}^{b}wR_{2} = [\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{2})^{2}]^{1/2}.$

Table S2. Selected bond lengths (Å) and bond angles (°) for LCP 1.	
--	--

LCP 1					
Zn(2)–O(4)	2.0183(15)	Zn(1)–O(1)	1.9957(15)		
Zn(2)-O(9)#1	2.1528(16)	Zn(1)-O(5)#2	2.0269(19)		
Zn(2)-O(10)#1	2.2706(19)	Zn(1)-N(1)	2.163(2)		
Zn(2)–O(3)	2.0793(17)	Zn(1)–O(2)	2.0329(18)		
Zn(2)–N(5)	2.144(2)	Zn(1)-N(4)#2	2.166(2)		
Zn(2)–N(8)#1	2.177(2)	O(2)-Zn(1)-N(4)#2	84.37(9)		
O(4)-Zn(2)-O(9)#1	153.75(7)	N(5)-Zn(2)-O(9)#1	88.36(7)		
O(4)-Zn(2)-O(10)#1	94.55(7)	N(5)–Zn(2)–O(10)#1	93.47(8)		

O(4)–Zn(2)–O(3)	115.78(7)	N(5)-Zn(2)-N(8)#1	174.54(7)		
O(4)–Zn(2)–N(5)	93.34(7)	N(8)#1-Zn(2)-O(10)#1	88.50(8)		
O(4)-Zn(2)-N(8)#1	91.59(8)	O(1)–Zn(1)–O(5)#2	137.05(9)		
O(9)#1-Zn(2)-O(10)#1	59.20(6)	O(1)–Zn(1)–N(1)	93.90(7)		
O(9)#1-Zn(2)-N(8)#1	88.27(7)	O(1)–Zn(1)–O(2)	121.98(8)		
O(3)–Zn(2)–O(9)#1	90.41(7)	O(1)-Zn(1)-N(4)#2	93.73(8)		
O(3)–Zn(2)–O(10)#1	149.33(6)	O(5)#2–Zn(1)–N(1)	88.82(8)		
O(3)–Zn(2)–N(5)	89.43(8)	O(5)#2–Zn(1)–O(2)	100.97(9)		
O(3)–Zn(2)–N(8)#1	86.30(8)	O(5)#2-Zn(1)-N(4)#2	90.46(8)		
O(2)–Zn(1)–N(1)	85.52(9)	N(1)-Zn(1)-N(4)#2	169.54(8)		
Symmetry codes: #1 -x,-y+2,-z+1, #2 -x+1,-y+1,-z+1					

 Table S3. Selected bond lengths (Å) and bond angles (°) for LCP 2.

LCP 2					
Zn(1)-O(1)	2.0032(18)	Zn(1)–N(1)#3	2.191(3)		
Zn(1)-O(2)#1	2.060(2)	Zn(1)-O(5)#2	2.348(2)		
Zn(1)-O(3)#2	2.19(2)	Zn(1)–N(2)	2.177(3)		
N(2)–Zn(1)–N(1)#3	171.39(8)	O(2)#1-Zn(1)-O(3)#2	91.2(6)		
O(1)–Zn(1)–O(2)#1	117.72(8)	O(2)#1-Zn(1)-N(1)#3	83.52(9)		
O(1)–Zn(1)–O(3)#2	150.3(7)	O(2)#1-Zn(1)-O(5)#2	150.35(8)		
O(1)-Zn(1)-N(1)#3	91.41(8)	O(2)#1-Zn(1)-N(2)	88.74(9)		
O(1)–Zn(1)–O(5)#2	90.34(8)	O(3)#2-Zn(1)-O(5)#2	60.0(7)		
O(1)–Zn(1)–N(2)	95.53(9)	N(1)#3-Zn(1)-O(3)#2	84.9(5)		
O(1)-Zn(1)-O(10)#2	146.3(7)	N(1)#3-Zn(1)-O(5)#2	86.61(9)		
N(2)–Zn(1)–O(5)#2	98.41(9)	N(2)-Zn(1)-O(3)#2	91.6(5)		
O(10)#2-Zn(1)-N(2)	84.9(6)				
Symmetry codes: #1 -x+1, -y, -z+1, #2 x-1, y, z, #3 -x, -y, -z+1					

Table S4. Selected bond lengths (Å) and bond angles (°) for LCP 3.

LCP 3					
Zn(1)–O(1)#1	1.983(2)	Zn(1)-N(1)#2	2.196(3)		
Zn(1)–O(2)	1.979(2)	Zn(1)–N(2)	2.179(3)		
Zn(1)-O(3)#2	2.034(2)	O(2)–Zn(1)–N(1)#2	88.56(9)		
O(1)#1-Zn(1)-O(3)#2	129.41(9)	O(2)–Zn(1)–N(2)	91.57(10)		

O(1)#1-Zn(1)-N(1)#2	95.12(10)	O(3)#2-Zn(1)-N(1)#2	87.67(9)		
O(1)#1–Zn(1)–N(2)	90.78(10)	O(3)#2-Zn(1)-N(2)	84.86(9)		
O(2)-Zn(1)-O(1)#1	128.32(9)	N(2)-Zn(1)-N(1)#2	172.37(10)		
O(2)–Zn(1)–O(3)#2	102.21(9)				
Symmetry codes: #1 x+1, y, z, #2 -x+1, -y+2, -z					

 Table S5. Comparison of fluorescent property of LCPs 1–3 for sensing Hg(II).

Fluorescent sensing	$K_{\rm sv} ({ m M}^{-1})$	Detection	Medium	Ref.
materials		Limit (M)		
LCP 1	5.44×10 ⁴	9.83×10 ⁻⁷	H ₂ O	This work
LCP 2	6.07×10 ³	8.84×10-6	H ₂ O	This work
LCP 3	2.43×10 ³	2.21×10 ⁻⁵	H ₂ O	This work
CdTe QD	_	1.0×10 ⁻⁸	H ₂ O/MeCN	2
Au/N-CQDs	_	1.18×10 ⁻⁷	H_2O	3

Table S6. Comparison of fluorescent property of LCP 1 for sensing adenine.

Fluorescent sensing	$K_{\rm sv}$ (M ⁻¹)	Detection	Medium	Ref.
materials		Limit (M)		
LCP 1	1.103×10 ⁴	4.83×10 ⁻⁶	H ₂ O	This work
L–Tryptophan-Cu ²⁺	_	0.046×10 ⁻⁶	H_2O	4
GO-PANI	_	1.3×10 ⁻⁵	H_2O	5
N–GN	_	8.0×10 ⁻⁵	DMA	6

Table S7. Comparison of fluorescent property of LCP 1 for sensing guanine.

Fluorescent sensing	$K_{\rm sv}$ (M ⁻¹)	Detection	Medium	Ref.
materials		Limit (M)		
LCP 1	8.99×10 ⁴	5.97×10 ⁻⁶	H ₂ O	This work
CDs	-	0.67×10^{-7}	H_2O	7
CdTe nanoparticles	_	8×10 ⁻⁸	H_2O	8
Cu ²⁺ -nuclear	_	1.9×10 ⁻⁶	H_2O	9
GO-PANI	_	1.36×10 ⁻⁵	H_2O	10

Fig. S1. ¹H NMR spectrum of 4-bpft in DMSO- d_6 .

Fig. S2. The coordination environment of Zn(II) in LCP **2** (a) and LCP **3** (b). The 1D structure of LCP **2** (c) and LCP **3** (d).

Fig. S3. The IR spectra of LCPs 1–3.

Fig. S5. The PXRD patterns of LCPs 1–3 before and after being soaked in acidic and basic solutions for 12 h with a wide pH range of $2.0 \sim 6.0$.

Fig. S6. The solid excitation and emission spectra of 4-bpft and LCPs 1–3.

Fig. S7. The cyclic response of the luminescence intensities for detecting Hg(II) of LCP **1** (a), LCP **2** (b), and LCP **3** (c); The PXRD patterns treated by Hg(II) of LCP **1** (d), LCP **2** (e), and LCP **3** (f).

Fig. S8. Competitive quenching experiments of LCP **1** for the selective recognition of adenine (a) and guanine (b).

Fig. S9. The cyclic response of the luminescence intensities of LCP **1** for detecting of adenine (a) and guanine (b); The PXRD patterns of LCP **1** treated by adenine (c) and guanine (d).

Fig. S10. The PXRD of LCP 1 after soaked in different analytes solution for 24h.

Fig. S11. The PXRD of LCP 2 after immersing in Hg(II) solution for 24h.

Fig. S12. The PXRD of LCP 3 after immersing in Hg(II) solution for 24h.

Fig. S13. UV-vis optical absorption spectra of analytes along with the excitation or emission spectra of LCPs 1–3.

References

- O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K., J. Appl. Crystallogr., 2009, 42, 339–341.
- B. Chen, J. Ma, T. Yang, L. Chen, P. F. Gao, C. Z. Huang, *Biosens. Bioelectron.*, 2017, 98, 36–40.
- A. Meng, Q. Xu, K. Zhao, Z. Li, J. Liang, Q. Li, Sens. Actuators B Chem., 2018, 255, 657–665.
- R. Duan, C. Li, S. Liu, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2016, 152, 272-277.
- 5. S. N. Tayade, A. K. Tawade, P. Talele, *Methods Appl. Fluoresc.*, 2019, 7, 045002.
- 6. J. Li, J. Jiang, H. Feng, RSC adv, 2016, 6, 31565-31573.
- 7. S. Pang, Y. Zhang, C. Wu, Sens. Actuators B Chem., 2016, 222,857-863.
- 8. L. Li, Y. Lu, Y. Ding, Can. J. Chem., 2012, 90, 173-179.
- 9. Y. Cui, J. Yu, S. Feng, *Talanta*, 2014, 130, 536-541.
- 10. S. N. Tayade, A. K. Tawade, P. Talele, Methods Appl. Fluoresc., 2019, 7, 045002.