Supporting Information

1. Materials and instruments

1.1 Materials

 $Y(CH_3COOH)_3 \cdot 4H_2O$, $Yb(CH_3COOH)_3 \cdot 4H_2O$, $Tm(CH_3COOH)_3 \cdot 4H_2O$, $Gd(CH_3COOH)_3 \cdot 4H_2O$, oleic acid, 1-octadecene, and polyvinylpyrrolidone (Mw=40,000) purchased from Sigma-Aldrich. 1,4-benzoquinone, were ethylenediaminetetraacetate, and 2-aminoterephthalic acid, and Rhodamine B were purchased from Adamas. NaOH, NH₄F, Chromium nitrate nonahydrate and isopropanol were purchased from Greagent. All the chemical reagents were used as received without further purification.

1.2 Experimental and characterization instruments

The microstructure of NYT, NYTG(3%), and NYTG(3%)/NMC were studied by a transmission electron microscope (TEM, JEM-2100, operated at 200 kV). The crystal structures of all the samples were analyzed by the X-ray diffraction instrument (XRD, Bruker D8 Advance) with a Cu K α radiation source ($\lambda = 0.15418$ nm) operated at 40 kV and 40 mA. The UV-Vis-NIR diffuse reflectance spectra (DRS) of the asprepared solid samples were investigated by using a PE Lambda 950 spectrophotometer, which equipped with an integrating sphere. The upconversion luminescence spectra were obtained by using a Fluorescence spectra were recorded on FluoroMax+ spectrometer with an external 980 nm NIR laser. The XPS spectra were performed by Thermo Scientific K- α + XPS spectrometer with the monochromatized Al-K α X-ray source (hv = 1486.8 eV). The 400 µm X-ray spot was used for XPS analysis. The absorbance of RhB in aqueous solutions was measured using a UH4150 spectrophotometer. Photocatalytic efficiency of RhB decomposition was tested under UV-Visible (<760 nm), near-infrared light (>760 nm) and full-spectra-light irradiation with a 300 W Xenon lamp (Perfect Light PLS-SXE-300+) that equipped with a cooling system for temperature control. The simulated solar light photocatalysis reaction was carried out using a solar simulator (AM 1.5 G).

Fig. S1. XPS spectra of NYTG(3%)/NMC: (a) Na 1s, (b) Y 3d, (c) F 1s, and (d) Yb 4d

Fig. S2. Fourier transform infrared (FTIR) spectra of NYT, NYTG(3%), NMC, and NYTG(3%)/NMC samples.

Fig. S2 demonstrated the FT-IR spectra of NYT, NYTG(3%), NMC, and NYTG(3%)/NMC samples. For the NYTG(3%)/NMC sample, the peaks of NYTG(3%) and NMC are all observed indicating that NYTG(3%)/NMC was successfully synthesized. The peak at 1658 cm⁻¹ was attributed to the N-H bending vibration of the amino groups in NMC. And the tiny peak at 1340 cm⁻¹ corresponds to the C-N stretching on benzene ring. Moreover, the double peaks at 3455 cm⁻¹ and 3380 cm⁻¹ can be assigned to asymmetric and symmetric vibration of the amino groups in NMC. The peaks at around 2928 and 2855 cm⁻¹ corresponding to $-CH_2-$ group and peaks near 1562 and 1464 cm⁻¹ corresponding to -COOH group were clearly observed suggesting that the successfully involvement of NYT and NYTG(3%). The introduction of Gd³⁺ ions does not change the infrared peak of upconversion nanoparticles.

Ln-UCNPs	Coating	Light	Pollutant	Degradation	Ref.
	materials	source		ratio/time (min)	
NaYF ₄ :Yb,Tm	TiO ₂ , Fe ₃ O ₄	simulated	MB	75%/50	1
		sunlight			
NaYF ₄ :Gd,Si	TiO ₂	simulated	MB	70%/240	2
		sunlight			
BiOBr:Yb,Er	/	simulated	RhB	100%/40	3
3D		sunlight			
Hierarchical					
Architectures					
NaLuF ₄ :Gd,Yb	SiO ₂ , Ag, g-	simulated	RhB	100%/150	4
,Tm@NaLuF4:	C_3N_4	sunlight			
Gd,Yb					
NaYF ₄ :Yb,Tm	$Zn_{0.5}Cd_{0.5}S$	simulated	Cr(VI)	98.7%/30	5
@NaYF ₄		sunlight			
NaYF ₄ :Yb,Tm	TiO ₂	simulated	deoxyniv	90.7%/60	6
		sunlight	alenol		
NaYF ₄	SnO ₂ , Ag	simulated	RhB	100%/30	7
		sunlight			
NaYF ₄ :Yb,Tm,	NH ₂ -MIL-	simulated	RhB	79%/90	This
Gd	101(Cr)	sunlight			work

Table S1 Photodegradation performance of different upconversion nanoparticlesbased photocatalysts.

References

- Y. Lv, L. Yue, Q. Li, B. Y. Shao, S. Zhao, H. T. Wang, S. J. Wu, Z. J. Wang, Recyclable (Fe₃O₄-NaYF₄:Yb,Tm)@TiO₂ nanocomposites with near-infrared enhanced photocatalytic activity, Dalton Trans., 2018, 47, 1666-1673.
- 2 S. Mavengere, J. S. Kim, UV-visible light photocatalytic properties of NaYF₄:(Gd, Si)/TiO₂ composites, Appl. Surf. Sci. 2018, 444, 491-496.
- 3 Y. J. Li, D. K. Xu, L. Yao, S. H. Yang, Y. L. Zhang, Enhanced upconversion luminescence in controllable self-assembled BiOBr:Yb³⁺/Er³⁺ 3D hierarchical architectures and their application in NIR photocatalysis, Ind. Eng. Chem. Res. 2018, 57, 17161–17169.
- 4 F. F. Zhao, K. K. Khaing, D. G. Yin, B. Q. Liu, T. Chen, C. L. Wu, K. X. Huang, L. L. Deng, L. Q. Li, Large enhanced photocatalytic activity of g-C₃N₄ by fabrication of a nanocomposite with introducing upconversion nanocrystal and Ag nanoparticles, RSC Adv., 2018, 8, 42308-42321.
- 5 W. N. Wang, W. Dong, C. X. Huang, B. Liu, S. Cheng, H. S. Qian, UCNPs@Zn_{0.5}Cd_{0.5}S core-shell and yolk-shell nanostructures: selective synthesis, characterization, and near-infrared-mediated photocatalytic reduction of Cr(VI), J. Nanomater., 2018, 2018, 1-9.
- 6 S. J. Wu, F. Wang, Q. Li, J. Wang, Y. Zhou, N. Duan, S. Niazi, Z. P. Wang, Photocatalysis and degradation products identifification of deoxynivalenol in wheat using upconversion nanoparticles@TiO₂ composite, Food Chem., 2020, 323, 126823.

7 Q. Y. Tian, W. J. Yao, W. Wu, J. Liu, Z. H. Wu, L. Liu, Z. G. Dai, Efficient UV–Vis-NIR responsive upconversion and plasmonic-enhanced photocatalyst based on lanthanide-doped NaYF₄/SnO₂/Ag, ACS Sustain. Chem. Eng. 2017, 5, 10889-10899.