Supporting Information:

Porous Co₃O₄ stabilized VS₂ nanosheets obtained with MOF template for efficient HER reaction

Zhenguo Wang^a, Ke Yu^{*, a,b}, Rong Huang^a and Ziqiang Zhu^a

^a Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics,

East China Normal University, Shanghai 200241, China

^b Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan,

Shanxi 030006, China

Corresponding Author

* Tel.: +86 21 54345198; Fax: +86 21 54345119. E-mail address: yk5188@263.net

Fig. S1 Optical picture of each electrode used in the HER experiment.

Fig. S2 (a, b) FESEM images under different magnification of Co-MOF.

Fig. S3 (a, b) FESEM images of TS-Co₃O₄.

Fig. S4 (a, b) FESEM images under different magnifications of 10-TS-Co₃O₄ @ VS₂.

Fig. S5 (a, b) FESEM images of VS_2 under different magnifications.

Fig. S6 EDS pattern of TS-Co₃O₄@VS₂.

Fig. S7 XPS full pattern of TS-Co $_3O_4@VS_2$.

Fig. S8 BET test spectrum of TS-Co $_3O_4@VS_2$ and VS $_2$.

Fig. S9 (a, b) Electron micrograph of $TS-Co_3O_4@VS_2$ electrode material after 12 h long-term hydrogen evolution.

Fig. S10 (a, b) HRTEM micrograph of TS-Co₃O₄@VS₂ electrode material after 12 h long-term hydrogen evolution under different magnification. (c) Line scan result of the selected area. (d) FFT pattern of the selected area.

Catalyst	Rs (Ω)	Ω) Rct (Ω)	
VS ₂	5.11	411.0	
TS-Co₃O₄@VS₂	8.02	190.2	

Table S1 The equivalent circuit component parameters of each catalyst.

S. No	Catalyst	Overpotential at 10 mA cm ⁻² (mV)	Tafel slope (mV/Dec)	References
1	VS_2 nanoflowers	400	170	1
2	Bulk VS ₂	120	70	2
3	CVD grown VS ₂	68	34	3
4	VS ₂ nanosheets	450	201	4
5	V-MoS ₂	194	59	5
6	MoS ₂ /VS ₂	199.6	95.2	6
7	$VS_2 NDs$	440	101	7
8	Bio-templated VS ₂	160	50	8
9	TS-Co ₃ O ₄ @VS ₂	175.29	57	This work

Table S2 Performance comparison of HER catalysts based on VS_2 in recent years.

Reference

- 1. W. Zhang, X. Chen, J. Zhang, C. Tuo, L. Ji, H. Li, X. Zhang and F. Yang, *Int. J. Hydrogen Energy*, 2018, **43**, 22949-22954.
- M. Yang, L. Cao, Z. Wang, Y. Qu, C. Shang, H. Guo, W. Xiong, J. Zhang, R. Shi, J. Zou, C. Cheng, H. Pan and Z. Lu, *Electrochim. Acta*, 2019, **300**, 208-216.
- J. Yuan, J. Wu, W. J. Hardy, P. Loya, M. Lou, Y. Yang, S. Najmaei, M. Jiang, F. Qin, K. Keyshar, H. Ji, W. Gao, J. Bao, J. Kono, D. Natelson, P. M. Ajayan and J. Lou, *Adv. Mater.*, 2015, 27, 5605-5609.
- 4. P. Mohan, J. Yang, A. Jena and H. S. Shin, J. Solid State Chem., 2015, 224, 82-87.
- 5. S. Bolar, S. Shit, J. S. Kumar, N. C. Murmu, R. S. Ganesh, H. Inokawa and T. Kuila, *Appl. Catal., B*, 2019, **254**, 432-442.
- 6. S. H. Yu, Z. Tang, Y. Shao, H. Dai, H. Y. Wang, J. Yan, H. Pan and D. H. C. Chua, ACS *Appl. Energy Mater.*, 2019, **2**, 5799-5808.
- 7. G. M. Kumar, P. Ilanchezhiyan, H. D. Cho, D. J. Lee, D. Y. Kim and T. W. Kang, *Int. J. Energy Res.*, 2020, **44**, 811-820.
- 8. T. Guo, Y. Song, Z. Sun, Y. Wu, Y. Xia, Y. Li, J. Sun, K. Jiang, S. Dou and J. Sun, *J. Energy Chem.*, 2020, **42**, 34-42.