Supplementary Material

Construction of Zeolite A Type Multivariate Metal-Organic Framework for Selective Sensing of Fe³⁺ and Cr₂O₇²⁻

Khalid Talha^a, Alamgir^a, Naeem Ahmed^b, Lin-Hua Xie,^a Xin Zhang,^{*a} and Jian-Rong Li^{*a}

^aBeijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China

^bDepartment of Chemistry, School of Natural Sciences, National University of Science and Technology, Islamabad, Pakistan

*Corresponding author.

E-mail address: zhang.xin@bjut.edu.cn; jrli@bjut.edu.cn

[#]Khalid Talha and Alamgir contributed equally to this work.

Figure S1. (a) linear linker; **(b)** the bent linker H_2TDC with 148° for BUT-26 synthesis; **(c)** bent linker H_2IPA with 120° angle for BUT-27 synthesis in this work.

Figure S2. PXRD patterns BUT-27 with treatment of different ions.

Figure S3. TGA curves of BUT-27.

FigureS4. Structure of the honeycomb-shaped layer of BUT-25 (a) and BUT-26 (d) formed by ATZ⁻ ligands and Zn²⁺ ions.(b) The formate ions distributed on the same side of the honeycomb-shaped layer. (c) Bilayers pillared by formate ions in BUT-25. (e) The TDC^{2–} ligands distributed on the two sides of the honeycomb-shaped layer. (f) The 3D layer-pillared structure of BUT-26⁻¹

Figure S5. Stern-Volmer plot of BUT-27 suspension quenched by (a) $Cr_2O_7^{2-}$ (b) Fe³⁺ with different concentrations.

Figure S6. The photographs of BUT-27 samples. (a) as-synthesized sample; (b) after detection of $Cr_2O_7^{2-}$ ions. (c) after detection of Fe³⁺ ions.

Figure S7. Spectral overlaps between UV-Vis absorption spectra of (a) Fe^{3+} (b) $Cr_2O_7^{2-}$ ions, excitation and emission spectra of BUT-27.

Sample name	BUT-27		
Formula	$C_{44}H_{38}N_{40}O_{25}Zn_8$		
Formula Weight	2048.5g/mol		
Space group	Pm-3m		
a	27.5455(2)Å		
b	27.5455(2) Å		
c	27.5455(2) Å		
α(deg)	90		
β(deg)	90		
γ (deg)	90		
V	20900.3(5) Å ³		
Ζ	3		
D. calcd (g cm ⁻³)	0.488		
GOF on F ²	1.095		
F(000)	3060.0		
μ(mm-)	0.988		
Rint	0.1051		
R_1/wR_2 (all Data)	0.1234/3537		

Table S1. Crystal and Structure Refinement Data for BUT-27

MOFs	K _{SV} (M ⁻¹)	Solvent	LOD µM	Ref
NMOF-2	5.87x10 ⁴	Water	0.004	2
$[Cd_2(L1)(1,4-NDC)_2]_n$	5.86x10 ⁴	H ₂ O		3
$[Zn_2(4,4'-nba)_2(1,4-bib)_2]_n$	6.70x10 ³	H ₂ O	3.8	4
${[Zn_2(TPOM)(NH_2-BDC)_2]\cdot 4H_2O}_n$	7.79x10 ³	DMF	3.9	5
[Zn(btz)] _n	4.23x10 ³	H ₂ O	2	6
[Zn(IPA)(3-PN)] _n	1.37x10 ³	H ₂ O	12.02	7
[Cd(IPA)(3-PN)] _n	2.91x10 ³	H ₂ O	2.26	7
BUT-28	1.02×10^5	H ₂ O	0.12	8
$\{[Cd(4BMPD)(BPDC)] \cdot 2H_2O\}_n$	6.4x10 ³	H ₂ O	37.6	9
BUT-27	5.9×10 ⁴	DMF/ H ₂ O	0.26	This work

Table S2. Comparison of Performance of Reported MOFs for Detecting $Cr_2O_7^{2-}$

Table S3. Comparison of Performance of Reported MOFs for Detecting Fe³⁺

MOF	Solvent	K _{SV} (M ⁻¹)	LOD µM	Ref
ZSB-1	DMF		0.05	10
FJI-C8(Zn)	DMF	3.75×10^{4}	0.37	11
$\{[Zn(L)(bpp)]:DMF\}_n$	DMF	2.56×10^{4}	7	12
HPU-1 (Zn)	H ₂ O	$1.0 imes 10^4$	1000	13
Cd ₂ (OBA) ₂ (BPTP)(H ₂ O)	DMF		0.36	14
$[Zn(ATZ)_{1.5}(TDC)_{0.5}]_nNH_2(CH_3)_2$	DMF/H ₂ O	1.7x10 ⁵	0.1	1
$[Zr_6O_4(OH)_4(2,7CDC)_6] \cdot 19H_2O \cdot 2DMF$	H ₂ O	5.5×10^{3}	0.018	15
Cu-MOFs	H ₂ O		0.5	16
BUT-27	DMF/	1.1 × 10 ³	0.19	This
	H ₂ O			WOIK

REFERENCES

(1) Talha, K.; He, T.; Xie, L.-H.; Wang, B.; Zhao, M.-J.; Zhang, Y.-Z.; Chen, Q.; Li, J.-R. A three-dimensional metal–organic framework with high performance of dual cation sensing synthesized via single-crystal transformation. *New J. Chem.*, **2020**, *44*, 11829-11834.

(2) Mukherjee, S.; Ganguly, S.; Samanta, D.; Das, D. Sustainable Green Route to Synthesize Functional Nano-MOFs as Selective Sensing Probes for CrVI Oxoanions and as Specific Sequestering Agents for $Cr_2O_7^{2-}$. *ACS Sustain. Chem. Eng.*, **2019**, *8*, 1195-1206.

(3) Yang, Y.-J.; Li, Y.-H.; Liu, D.; Cui, G.-H. A dual-responsive luminescent sensor based on a water-stable Cd (II)-MOF for the highly selective and sensitive detection of acetylacetone and $Cr_2O_7^{2-}$ in aqueous solutions. *CrystEngComm.*, **2020**, *22*, 1166-1175.

(4) Xu, T.-Y.; Li, J.-M.; Han, Y.-H.; Wang, A.-R.; He, K.-H.; Shi, Z.-F. A new 3D four-fold interpenetrated dia-like luminescent Zn (ii)-based metal–organic framework: the sensitive detection of Fe³⁺, $Cr_2O_7^{2-}$, and CrO_4^{2-} in water, and nitrobenzene in ethanol. *New J. Chem.*, **2020**, *44*, 4011-4022.

(5) Lv, R.; Wang, J.; Zhang, Y.; Li, H.; Yang, L.; Liao, S.; Gu, W.; Liu, X. An amino-decorated dual-functional metal–organic framework for highly selective sensing of Cr (III) and Cr (VI) ions and detection of nitroaromatic explosives. *J. Mater. Chem.*, **2016**, *4*, 15494-15500.

(6) Cao, C.-S.; Hu, H.-C.; Xu, H.; Qiao, W.-Z.; Zhao, B. Two solvent-stable MOFs as a recyclable luminescent probe for detecting dichromate or chromate anions. *CrystEngComm.*, **2016**, *18*, 4445-4451.

(7) Parmar, B.; Rachuri, Y.; Bisht, K. K.; Laiya, R.; Suresh, E. Mechanochemical and conventional synthesis of Zn (II)/Cd (II) luminescent coordination polymers: dual sensing probe for selective detection of chromate anions and TNP in aqueous phase. *Inorg. Chem.*, **2017**, *56*, 2627-2638.

(8) Xu, M.-M.; Kong, X.-J.; He, T.; Wu, X.-Q.; Xie, L.-H.; Li, J.-R. A Stable Zr (IV)-Based Metal–Organic Framework Constructed from C= C Bridged Di-isophthalate Ligand for Sensitive Detection of $Cr_2O_7^{2-}$ in Water. *Inorg. Chem.*, **2018**, *57*, 14260-14268.

(9) Chen, S.; Shi, Z.; Qin, L.; Jia, H.; Zheng, H. Two new luminescent Cd (II)-metal– organic frameworks as bifunctional chemosensors for detection of cations Fe^{3+} , anions CrO_4^{2-} , and Cr2O72–in aqueous solution. *Cryst. Growth. Des.*, **2017**, *17*, 67-72.

(10) Han, L. J.; Zheng, D.; Chen, S. G.; Zheng, H. G.; Ma, J. A Highly Solvent-Stable Metal–Organic Framework Nanosheet: Morphology Control, Exfoliation, and Luminescent Property. *Small* **2018**, *14*, 1703873.

(11) Chen, C.-H.; Wang, X.-S.; Li, L.; Huang, Y.-B.; Cao, R. Highly selective sensing of Fe³⁺ by an anionic metal–organic framework containing uncoordinated nitrogen and carboxylate oxygen sites. *Dalton Trans.*, **2018**, *47*, 3452-3458.

(12) Chen, Z.; Mi, X.; Wang, S.; Lu, J.; Li, Y.; Li, D.; Dou, J. Two novel penetrating coordination polymers based on flexible S-containing dicarboxylate acid with sensing properties towards Fe3+ and Cr2O72-ions. *J. Solid State Chem.*, **2018**, *261*, 75-85.

(13) Li, H.; He, Y.; Li, Q.; Li, S.; Yi, Z.; Xu, Z.; Wang, Y. Highly sensitive and selective fluorescent probe for Fe 3+ and hazardous phenol compounds based on a water-stable Zn-based metal–organic framework in aqueous media. *RSC Adv.*, **2017**, *7*, 50035-50039.

(14) Han, L.-J.; Yan, W.; Chen, S.-G.; Shi, Z.-Z.; Zheng, H.-G. Exploring the detection of metal ions by tailoring the coordination mode of V-Shaped thienylpyridyl ligand in three MOFs. *Inorg. Chem.*, **2017**, *56*, 2936-2940.

(15) Das, A.; Biswas, S. A multi-responsive carbazole-functionalized Zr (IV)-based metal-organic framework for selective sensing of Fe (III), cyanide and p-nitrophenol. *Sens. Actuators, B.*, **2017**, *250*, 121-131.

(16) Ming, F.; Hou, J.; Huo, D.; Zhou, J.; Yang, M.; Shen, C.; Zhang, S.; Hou, C. Copper-based metal–organic framework nanoparticles for sensitive fluorescence detection of ferric ions. *Anal.Methods*, **2019**, *11*, 4382-4389.