Electrochemiluminescence properties, or luminescence sensing of four novel polymers

derived from 3-(pyrazin-2-yl)-1H-Pyrazole-5-carboxylic acid

Feng-Zhen Hua^a, Chao Feng^c, Ling-Mei Zhang^a, Yu-Meng Yang^a, Guo-Ning Zhang^b, Yu-Cheng

Wang^{b*}, Hong Zhao^{a*}

^a School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.

^b Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union

Medical College, Beijing, 100050, China.

^c School of Materials and Chemical Engineering, Bengbu University, Bengbu 233030, PR China.

Coorresponding to

E-mail: zhaohong@seu.edu.cn (H. Zhao)

Table S1 Crystal datas and refinement parameters for polymers 1–4.				
Polymer	1	2	3	4
Formula	$C_{16}H_8Cu_2N_8O_4$	$C_{16}H_{16}Cl_2N_8O_8Zn_3\\$	C ₈ H ₅ ClN ₄ O ₂ Pb	C ₈ H ₈ N ₄ NiO ₄
Mr	503.4	715.44	431.80	282.87
Crystal system	monoclinic	triclinic	monoclinic	monoclinic
Space group	$P2_l/c$	<i>P</i> –1	$P2_l/c$	$P2_l/c$
a(Á)	5.1833(4)	6.8724(4)	13.8772(7)	8.5821(10)
b(Á)	23.147(2)	8.5555(6)	9.5629(5)	13.5780(11)
c(Á)	6.8285(7)	10.8947(7)	7.5481(4)	9.2842(11)
α(°)	90	103.025(5)	90	90
β(°)	107.681(10)	102.889(5)	94.152(6)	116.067(15)
γ(°)	90	111.241(6)	90	90
$V(\text{\AA}^3)$	780.57(13)	547.97(7)	999.05(9)	971.8(2)
F(000)	500	356	780	572
Z	4	2	4	4
Dc(g/cm ³)	2.142	2.168	2.864	1.926
$\mu(mm^{-1})$	2.776	3.567	17.143	2.006
θ(°)	3.5–29.5	3.3–29.7	3.6–29.5	3.9–29.9
Ref.meas./indep	3682, 1864	7240, 2664	5157, 2408	4449, 2328
Obs.ref.[$l \ge 2\sigma(l)$]	1480	2119	2021	1953
R _{int}	0.027	0.034	0.026	0.025
$R_1[I \ge 2\sigma(I)]^a$	0.0346	0.0340	0.0315	0.0322
wR ₂ (all data) ^b	0.0824	0.0809	0.0755	0.0761
GOF	1.04	1.062	1.08	1.03
$\Delta \rho(\text{max.min})(\text{e}\ \text{\AA}^{-3})$	0.50, -0.45	0.65, -0.50	1.20, -1.79	0.39, -0.56
a	$R_1 = \Sigma F_0 - F_c / \Sigma F_c $	$C_{\rm o}$ b $wR_2 = [\Sigma w(F_0)]$	$- F_{\rm c}^2 ^2 / \Sigma w (F_{\rm o}^2)^2]^{1/2}$	/2

Table S2a Selected bond lengths (Å) and angles (°) for polymer 1.

Cu(1)–N(1)	1.919(2)	Cu(1)–N(2) ⁱ	1.935(2)
Cu(1)–O(1)	1.973(2)	$Cu(1) - N(3)^{i}$	2.040(2)
N(1)-Cu(1)-N(2) ⁱ	93.82(10)	N(1)-Cu(1)-O(1)	81.60(9)
N(2) ⁱ -Cu(1)-O(1)	169.33(9)	N(1)-Cu(1)-N(3) ⁱ	173.28(9)
N(2) ⁱ -Cu(1)-N(3) ⁱ	79.66(10)	O(1)-Cu(1)-N(3) ⁱ	104.55(9)
Symmetry code: (i) $-x+1$, $-y+1$, $-z+1$			

Table S2b Selected bond lengths (Å) and angles ($^{\circ}$) for polymer 2.

Zn(1)-O(4)	2.048(2)	$Zn(1)-O(2)^{i}$	2.0660(19)
Zn(1)–N(3)	2.101(2)	Zn(1)–N(1)	2.173(2)
Zn(1)–Cl(1)	2.2751(9)	Zn(2)–N(4) ⁱⁱ	2.067(2)
Zn(2)–N(4)	2.067(2)	Zn(2)–O(1) ⁱⁱ	2.171(2)
Zn(2)–O(1)	2.171(2)	Zn(2)–O(3) ⁱⁱ	2.180(3)
Zn(2)–O(3)	2.180(3)		
O(4)–Zn(1)–O(2) ⁱ	88.42(9)	O(4)–Zn(1)–N(3)	91.64(9)
O(2) ⁱ –Zn(1)–N(3)	152.14(9)	O(4)–Zn(1)–N(1)	136.16(9)
O(2) ⁱ –Zn(1)–N(1)	83.70(8)	N(3)–Zn(1)–N(1)	77.05(8)
O(4)–Zn(1)–Cl(1)	112.68(7)	$O(2)^{i}$ –Zn(1)–Cl(1)	104.30(7)
N(3)–Zn(1)–Cl(1)	101.35(7)	N(1)–Zn(1)–Cl(1)	111.06(7)
N(4) ⁱⁱ –Zn(2)–N(4)	180.0	N(4) ⁱⁱ –Zn(2)–O(3) ⁱⁱ	90.37(9)
N(4) ⁱⁱ –Zn(2)–O(1) ⁱⁱ	78.12(8)	N(4)–Zn(2)–O(3) ⁱⁱ	89.63(9)
N(4)–Zn(2)–O(1) ⁱⁱ	101.88(8)	O(1) ⁱⁱ –Zn(2)–O(3) ⁱⁱ	92.65(10)
N(4) ⁱⁱ –Zn(2)–O(1)	101.88(8)	O(1)–Zn(2)–O(3) ⁱⁱ	87.35(10)
N(4)–Zn(2)–O(1)	78.12(8)	N(4) ⁱⁱ –Zn(2)–O(3)	89.63(9)
O(1) ⁱⁱ –Zn(2)–O(1)	180.0	N(4)-Zn(2)-O(3)	90.37(9)
O(1) ⁱⁱ –Zn(2)–O(3)	87.35(10)	O(3) ⁱⁱ –Zn(2)–O(3)	180.0
O(1)–Zn(2)–O(3)	92.65(10)		

Pb(1)–N(2)	2.466(5)	Pb(1)–N(3)	2.681(5)
Pb(1)–O(1) ⁱ	2.538(4)	Pb(1)-Cl(1)	2.685(2)
N(2)-Pb(1)-O(1) ⁱ	76.80(15)	N(2)-Pb(1)-N(3)	63.65(16)
O(1) ⁱ –Pb(1)–N(3)	138.20(14)	N(2)–Pb(1)–Cl(1)	87.52(14)
$O(1)^{i}$ -Pb(1)-Cl(1)	83.02(14)	N(3)–Pb(1)–Cl(1)	82.34(13)
Symmetry code: (i) -x, y-1/2,	-z+1/2		

Table S2c Selected bond lengths (Å) and angles ($^{\circ}$) for polymer 3.

Table S2d Selected bond lengths (Å) and angles ($^{\circ}$) for polymer 1.

Ni(1)–O(3)	2.129(2)	Ni(1)–N(2)	2.0035(19)	
Ni(1)–N(3)	2.1596(19)	Ni(1)–O(1) ⁱ	2.1199(18)	
Ni(1)–N(1) ⁱ	1.9903(18)	Ni(1)–N(4) ⁱⁱⁱ	2.1320(19)	
O(3)-Ni(1)-N(2)	92.09(8)	O(3)-Ni(1)-N(3)	88.70(7)	
O(1) ⁱⁱ –Ni(1)–O(3)	87.64(8)	O(3)–Ni(1)–N(1) ⁱⁱ	92.59(8)	
O(3)-Ni(1)-N(4) ⁱⁱⁱ	170.76(10)	N(2)-Ni(1)-N(3)	77.36(7)	
O(1) ⁱⁱ –Ni(1)–N(2)	172.03(7)	N(1) ⁱⁱ –Ni(1)–N(2)	93.86(8)	
N(2)-Ni(1)-N(4) ⁱⁱ	93.04(8)	O(1) ⁱⁱ –Ni(1)–N(3)	110.60(7)	
N(1) ⁱⁱ –Ni(1)–N(3)	171.17(8)	N(3)-Ni(1)-N(4) ⁱⁱⁱ	84.92(7)	
O(1) ⁱⁱ –Ni(1)–N(1) ⁱⁱ	78.19(7)	O(1) ⁱⁱ –Ni(1)–N(4) ⁱⁱⁱ	88.34(8)	
N(1) ⁱⁱ –Ni(1)–N(4) ⁱⁱⁱ	94.73(8)			
Symmetry code: (i) x, 1/2–y, -1/2+z; (ii) 1–x, -y, 1–z; (iii) x, 1/2–y, 1/2+z				

Table 35 Futative hydrogen bond interactions (A,°) for the porymers 1–4.					
$D–H\cdots A$	D–H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$	
1					
$C(3)-H(3)\cdots O(2)^{i}$	0.93	2.56	3.357(4)	144.2	
C(8)-H(8)N(4) ⁱⁱ	0.93	2.43	3.347(4)	167.6	
Symmetry code: $i = -x+3, -y$	x+1, -z+2; ii = x-1,	-y+1/2, z-1/2.			
2					
O3–H3A····Cl1 ⁱ	0.70(6)	2.72(6)	3.376(3)	159(8)	
C2–H2····Cl1 ⁱⁱ	0.93	2.75	3.613(3)	154	
Symmetry code: $i = -x, -y, -z, ii = 1-x, -y, 1-z$					
3					
C7–H7····Cl ⁱ	0.93	2.75	3.489(7)	138	
Symmetry code: $i = -x, 2-y, -z$					
4					
$O(3)$ -H3B···· $O(2)^i$	0.76(4)	1.96(4)	2.718(3)	171(4)	
Symmetry code: $i = 2-x, -y, 1-z$					

Table S3 Putative hydrogen bond interactions (Å, °) for the polymers 1–4.

Figure S1 PXRD patterns of polymers polymers 1–4.

Figure S2 Thermogravimetric analysis of polymers 1-4.

Fig.S3 The fluorescence excitation spectra of polymers 1-4 compared with the free H_2L ligand.

Figure. S5 Electrochemical luminescence for Ru(bpy)₃²⁺