Supporting Information

Asymmetric Metal-Organic Frameworks with Double Helices for Enantioselective Recognition

Yang Li, Shumei Chen*, Zhong-Xuan Xu, Xin Wu*, Huabin Zhang, Jian Zhang

Powder X-ray Diffraction Studies

Powder X-ray diffraction (PXRD) data were collected with a Rigaku Mini Flex II diffractometer with Cu-K α radiation ($\lambda = 1.54056$ Å) with a step size of 5°/min under ambient conditions.

Fig. S1 The PXRD patterns of 1L and 1D.

Thermogravimetric Studies

Thermogravimetric analyses (TGA) were performed using a NETSCHZ STA-449C thermoanalyzer with a heating rate of 10°C/min under a nitrogen atmosphere.

Fig. S2 The TG curves of 1L and 1D.

Circular Dichroism (CD) Spectra

The liguid-state CD spectra were recorded on a MOS-450 spectropolarimeter.

Fig. S3 (a) The CD signals of L-carvone solution without compound 1L. (b-d) The CD signals of L-carvone solution with different amount of compound 1L (b. 100 mg, c. 200 mg, d. 300 mg).

Fig. S4 (a) The CD signals of D-carvone solution without compound 1L. (b-e) The CD signals of D-carvone solution with different amount of compound 1L (b. 100 mg, c. 200 mg, d. 300 mg, e. 400 mg).

Scheme S1. Schematic illustration of the interaction between 1L and carvone.

Fig. S5 The linear fits of CD signals based on Fig. 4.

Fig. S6 Enantioselective separation of racemic mixtures of carvone in ethanol solutions by 1L.

D-H····A	d (D-H)	d (H…A)	$d(D \cdots A)$	∠(DHA)
N(1)-H(1A) ···O(23)	0.86	2.39	3.198(9)	158
N(2)-H(2B) …O(6)	0.86	2.29	2.648(7)	105
N(3)-H(3A) ···O(8)	0.86	2.27	2.643(8)	107
N(4)-H(4B)…O(31)	0.86	2.27	3.053(10)	152
N(5)-H(5A)…O(34)	0.86	2.35	3.159(9)	157
N(7)-H(7A)…O(7)	0.86	2.23	3.041(9)	158
N(10)-H(10A)····O(29)	0.86	2.26	2.617(7)	105
N(11)-H(11A)····O(32)	0.86	2.29	2.630(9)	104
N(12)-H(12B)····O(35)	0.86	2.27	2.632(8)	106

Table S1. Distance (Å) and angles (°) of hydrogen bonding for 1L.

Sample	Probe	Enantioselectivity	Maagunamant	Dof
	molecules	(K_S/K_R)	Weasurement	ĸeī.
1L	carvone	1.36	CD	In this work
Zn-MOF- Cinchonine/	Cinchonine/C	1 4	F 1	Nat. Commun.
C-Tb	inchonidine	1.4	Fluorescence	2019, 10 , 5117.
am 1 alco	amino	1.17-1.39	Fluorescence	J. Am. Chem. Soc.
				2012, 134 , 9050-
	alconols			9053.
MIL-			UV-vis	ACS Appl. Mater.
101@c-	carvone	1.638	absorbance	Interfaces 2018, 10,
PANI			spectra	26365–26371
1- chirMOF phenyl 1 mine	1-			Angew. Chem. Int.
	phenylethyla	1.6	QCM sensor	Ed. 2021, 60, 3566-
	mine			3571.
(S)-6	2-Amino-1-	1.8	Eluarazaaraa	Chem. Sci. 2016, 7,
	propanol		Fluorescence	3614-3620.
phenylalamin MOF1 ol			J. Am. Chem. Soc.	
	ol	1.43	Fluorescence	2019, 141, 17685-
				17695
1.XB	BINOL-PO4	1.51	¹ H NMR titration	Chem. Commun.,
				2016, 52 , 5527-
				5530

 Table S2. Summary of representative chiral sensors