Supporting Information

Modulating the slow magnetic relaxation of a mononuclear Dy(III) single-molecule magnet via magnetic field and dilution effect

Peipei Cen,^{*a#} Zixin He,^{a#} Runmei Ding,^a Huifang Yang,^a Li Li,^d Yi-Quan Zhang,^{*c} Yonghong Li,^a Danian Tian,^{*a} and Xiangyu Liu^{*b}

^a School of Public Health and Management, Ningxia Medical University, Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan 750004, Ningxia, China.

^b College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.

^c Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China.

^d People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750002, Ningxia, China.

These authors contributed equally to this work.

*Corresponding author Dr. Peipei Cen E-mail: 13895400691@163.com

Dr. Danian Tian E-mail: tiandanian@163.com

Dr. Xiangyu Liu E-mail: tiandanian@163.com

Prof. Yi-Quan Zhang E-mail: zhangyiquan@njnu.edu.cn

Contents

Fig. S1 Molecular stacking chart of complex 1. H atoms and solvent molecules are omitted for clarity.

Fig. S2 PXRD curves of 1 and 1@Y

Fig. S3 TGA plots of 1 under N_2 environment.

Fig. S4 M vs H curves for 1

Fig. S5 Temperature dependence of χ' and χ'' susceptibilities for 1 without static field. Fig. S6 Cole-Cole plots for 1 without static field.

Fig. S7 Plot of the frequency dependence of the χ'' ac susceptibility component under indicated dc field at 2 K for complex 1 (left). Plot of τ vs. *H* for 1 under different dc fields at 2 K (right).

Fig. S8 Temperature dependence of χ' and χ'' susceptibilities for 1 at applied dc fields of 1200 Oe.

Fig. S9 Cole-Cole plots for 1 at applied dc fields of 1200 Oe.

Fig. S10 Calculated model structures of Dy(III) fragment of 1. H atoms are omitted.

Table S1. Crystal Data and Structure Refinement Details for complexes 1 and 2.

 Table S2. Selected bond lengths (Å) and bond angles (°) for 1 and 2.

Table S3. Dy (III) ions geometry analysis of 1 by SHAPE 2.1 software.

Table S4. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under zero dc field of **1**.

Table S5. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under 1200 Oe dc field of 1.

Table S6. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under 0 Oe dc field of 1@Y.

Table S7. In wave functions with definite projection of the total moment $| J_M >$ for the lowest three Kramers doublets (KDs) of the Dy(III) for complex **1**.

Fig. S1 Molecular stacking chart of complex 1. H atoms and solvent molecules are omitted for clarity.

Fig. S2 PXRD curves of 1 and 1@Y

Fig. S3 TGA plots of 1 under N_2 environment.

Fig. S4 M vs H curves for 1

Fig. S5 Temperature dependence of χ' and χ'' susceptibilities for 1 without static field.

Fig. S7 Plot of the frequency dependence of the χ'' ac susceptibility component under indicated dc field for complex 1 (a). Plot of τ vs. *H* for 1 under different dc fields K (b), the solid line is guide for eyes.

Fig. S8 Temperature dependence of χ' and χ'' susceptibilities for 1 at applied dc fields of 1200 Oe.

Fig. S9 Cole-Cole plots for 1 at applied dc fields of 1200 Oe. The solid lines represent the best fit to the measured results.

Fig. S10 Calculated model structures of Dy(III) fragment of 1. H atoms are omitted.

	1	2
Empirical formula	$C_{44}H_{26}DyF_9N_4O_6$	$C_{44}H_{26}YF_9N_4O_6$
Formula weight	1040.19	966.60
Crystal system	orthorhombic	orthorhombic
Space group	Pna2 ₁	Pna2 ₁
a (Å)	21.3258(11)	21.53 (2)
b (Å)	10.8147(3)	10.926(10)
c (Å)	17.9497(8)	18.350(16)
α (°)	90	90
β (°)	90	90
γ (°)	90	90
V (Å3)	4139.8(3)	4317(7)
Ζ	4	4
μ (mm-1)	10.500	1.442
Unique reflections	5776	9327
Observed reflections	10287	22036
Rint	0.0398	0.0990
Final R indices $[I \ge 2\sigma(I)]$	$R_1 = 0.0725$	$R_1 = 0.0717$
	$wR_2 = 0.1713$	$wR_2 = 0.1495$
R indices (all data)	$R_1 = 0.0817$	$R_1 = 0.1948$
	$wR_2 = 0.1808$	$wR_2 = 0.1953$

 Table S1. Crystal Data and Structure Refinement Details for complexes 1 and 2.

Table S2. Selected bond lengths (Å) and bond angles (°) for 1 and 2.

Complex 1			
Dy(1)-O(1)	2.243(4)	O(3)-Dy(1)-O(2)	80.5(7)
Dy(1)-O(2)	2.317(4)	O(3)-Dy(1)-O(4)	73.6(7)
Dy(1)-O(3)	2.231(3)	O(3)-Dy(1)-N(1)	71.5(6)
Dy(1)-O(4)	2.300(1)	O(3)-Dy(1)-N(2)	83.5(7)
Dy(1)-O(5)	2.362(3)	O(4)-Dy(1)-O(2)	125.6(6)
Dy(1)-O(6)	2.378(6)	O(4)-Dy(1)-N(1)	131.2(5)
Dy(1)-N(1)	2.492(1)	O(4)-Dy(1)-N(2)	78.9(7)
Dy(1)-N(2)	2.443(8)	O(5)-Dy(1)-O(2)	76.7(6)
O(1)-Dy(1)-O(2)	75.1(5)	O(5)-Dy(1)-O(3)	138.8(7)
O(1)-Dy(1)-O(3)	128.8(5)	O(5)-Dy(1)-N(1)	71.1(5)
O(1)-Dy(1)-O(4)	85.3(4)	O(5)-Dy(1)-N(2)	95.5(7)
O(1)-Dy(1)-O(5)	77.1(4)	O(6)-Dy(1)-O(1)	69.1(1)
O(1)-Dy(1)-N(1)	143.4(3)	O(6)-Dy(1)-O(2)	136.4(6)
O(1)-Dy(1)-N(2)	137.9(4)	O(6)-Dy(1)-O(3)	142.2(7)
O(2)-Dy(1)-N(1)	80.3(5)	O(6)-Dy(1)-N(1)	115.7(5)
O(2)-Dy(1)-N(2)	144.2(7)	O(6)-Dy(1)-N(2)	69.3(8)

Complex 2			
Y(1)-O(1)	2.299(7)	O(2)-Y(1)- N(2)	69.0(9)
Y(1)-O(2)	2.300(8)	O(3)-Y(1)- O(5)	136.1(3)
Y(1)-O(3)	2.323(10)	O(3)-Y(1)- N(1)	138.7(7)
Y(1)-O(4)	2.296(8)	O(3)-Y(1)- N(2)	75.2(6)
Y(1)-O(5)	2.325(8)	O(4)-Y(1)- O(1)	78.9(3)
Y(1)-O(6)	2.323(8)	O(4)-Y(1)- O(2)	116.3(3)
Y(1)-N(1)	2.505(15)	O(4)-Y(1)- O(3)	71.8(3)
Y(1)-N(2)	2.522(14)	O(4)-Y(1)- O(5)	75.1(3)
O(1)-Y(1)- O(2)	71.7(3)	O(4)-Y(1)- O(6)	85.8(3)
O(1)-Y(1)- O(3)	121.3(3)	O(4)-Y(1)- N(1)	149.5(7)
O(1)-Y(1)- O(5)	78.5(3)	O(4)-Y(1)- N(2)	143.9(7)
O(1)-Y(1)- O(6)	150.1(3)	O(5)-Y(1)- N(1)	78.5(8)
O(1)-Y(1)- N(1)	81.1(7)	O(5)-Y(1)- N(2)	122.9(8)
O(1)-Y(1)- N(2)	132.1(9)	O(6)-Y(1)- O(3)	76.7(3)
O(2)-Y(1)- O(3)	77.6(3)	O(6)-Y(1)- O(5)	72.8(3)
O(2)-Y(1)- O(5)	144.4(3)	O(6)-Y(1)- N(1)	100.9(9)
O(2)-Y(1)- O(6)	138.2(2)	O(6)-Y(1)- N(2)	72.9(9)
O(2)-Y(1)- N(1)	78.1(10)	N(1)-Y(1)- N(2)	65.1(7)

Configuration	ABOXIY, 1(Dy)
Hexagonal bipyramid (D_{6h})	15.990
Cube $(O_{\rm h})$	9.842
Square antiprism (D_{4d})	1.094
Triangular dodecahedron (D_{2d})	1.153
Johnson gyrobifastigium J26 (D_{2d})	14.601
Johnson elongated triangular bipyramid J14 (D_{3h})	28.725
Biaugmented trigonal prism J50 (C_{2v})	1.675
Biaugmented trigonal prism (C_{2v})	1.167
Snub siphenoid J84 (D_{2d})	3.497
Triakis tetrahedron (T_d)	10.494
Elongated trigonal bipyramid(D_{3h})	23.720

 Table S3. Dy (III) ions geometry analysis of 1 by SHAPE 2.1 software.

	Table S4. Relaxation	fitting parameters	from least-squares	fitting of $\gamma(f)$	data under zero	dc field of 1.
--	----------------------	--------------------	--------------------	------------------------	-----------------	----------------

<i>T</i> (K)	χт	χs	α
2	3.245	0.283	0.134
3	2.172	0.193	0.131
4	1.629	0.148	0.126
5	1.302	0.121	0.117
6	1.083	0.103	0.106
6.5	0.999	0.096	0.098
7	0.927	0.091	0.092
7.5	0.865	0.085	0.085
8	0.811	0.081	0.078
8.5	0.763	0.078	0.071
9	0.720	0.075	0.065
9.5	0.682	0.074	0.059
10	0.648	0.073	0.054
10.5	0.617	0.073	0.048
11	0.589	0.073	0.044
11.5	0.563	0.074	0.039
12	0.539	0.075	0.036
12.5	0.518	0.076	0.031
13	0.498	0.075	0.029
13.5	0.480	0.074	0.027
14	0.463	0.072	0.026

<i>T</i> (K)	χ _T	χs	α
3	0.154	0.049	0.611
4	2.422	0.036	0.335
5	1.738	0.016	0.278
6	1.342	0.011	0.215
7	1.100	0.014	0.179
8	0.938	0.014	0.163
9	0.817	0.016	0.149
10	0.725	0.019	0.138
11	0.650	0.025	0.128
12	0.591	0.033	0.115
13	0.541	0.042	0.103
14	0.499	0.051	0.097
15	0.464	0.065	0.075
16	0.433	0.077	0.059
17	0.408	0.081	0.053
18	0. 384	0.059	0.052
19	0.363	0.011	0.043
20	0.344	0.054	0.019

Table S5. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under 1200 Oe dc field of **1**.

Table S6. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under 0 Oe dc field of 1@Y.

L L		0 100)	0	
<i>T</i> (K)	χ _T	χs	α	•
2	0.153	0.043	0.474	•
3	0.156	0.036	0.443	
4	0.119	0.028	0.430	
5	0.095	0.025	0.391	
6	0.078	0.021	0.340	
6.5	0.071	0.019	0.312	
7	0.065	0.016	0.285	
7.5	0.061	0.015	0.259	
8	0.057	0.014	0.239	
8.5	0.053	0.017	0.213	
9	0.050	0.021	0.191	
9.5	0.047	0.015	0.168	
10	0.045	0.011	0.149	
10.5	0.043	0.013	0.128	
11	0.041	0.015	0.111	

Table S7. In wave functions with definite projection of the total moment | $J_M >$ for the lowest three Kramersdoublets (KDs) of the Dy(III) for complex 1.

E/cm^{-1}	wave functions
0.00	98.7% ±15/2>+0.7% ±13/2>
143.80	1.8% ±15/2> + 95.4% ±13/2> + 0.2% ±11/2>
242.61	5.4% ±13/2> + 77.8% ±11/2> + 4.0 % ±9/2> + 3.3% ±7/2>
297.44	$12.8\% \pm 13/2> + 25.9\% \pm 11/2> + 56.7\% \pm 9/2> + 9.0\% \pm 7/2>$