Electronic Supplementary Information (ESI) for

A Pillar-layered Binuclear 3D Cobalt(II) Coordination Polymer as Electrocatalyst for Overall Water Splitting and Chemosensor for Cr(VI) Anions Detection

Dongsheng Zhao^a, Junqi Song^a, Xiutang Zhang^{*}, Feng Wang^a, Bei Li^a, Lulu Yang^a, Yuxin Deng^a, Qingbo Li^{*b}, 5 Liming Fan^{*a}

^aDepartment of Chemistry, College of Science, North University of China, Taiyuan, P. R. China. ^bCenter for Optics Research and Engineering, Shandong University, Qingdao, Shandong, P. R. China. *E-mail: limingfan@nuc.edu.cn; xiutangzhang@163.com;liqingbo2016@sdu.edu.cn.*

Table of Contents

1() Fig. S1 Selected H ₄ TPTC and BIBP organic ligands in the assembly of 1	2
	Fig. S2 The asymmetry unit of 1 with 50% probability (Symmetry codes: i 1- <i>x</i> , 2- <i>y</i> , - <i>z</i> ; ii 1- <i>x</i> , 1- <i>y</i> , 1- <i>z</i> ; iii <i>x</i> , 1+ <i>y</i> ,	, -1+z
	iv -x, 1-y, 1-z.)	2
	Fig. S3 The coordination mode of TPTC ⁴⁻ ligand in 1	2
	Fig. S4 The binuclear {Co ₂ (COO) ₂ } SBU in 1	.2
15	5 Fig. S5 The BIBP as pillars to connect the binuclear {Co ₂ (COO) ₂ } SBUs in 1	3
	Fig. S6 PXRD patterns of 1 under different conditions	.3
	Fig. S7 TGA curve for 1	3
	Fig. S8 The χ_m versus T of 1	3
	Fig. S9 Relative cyclic voltammogram profile of NF	4
20) Fig. S10 Lines fitting plots between $v^{1/2}$ and i of NF	4
	Fig. S11 PXRD patterns of 1 after electrochemical testing	4
	Fig. S12 The fluorescence spectra of free H_4 TPTC, BIBP and 1 in solid state at room temperature	5
	Fig. S13 The luminescence intensities of CP 1 which were dispersed in the aqueous solution of different anions.	5
	Fig. S14 The changes of emission spectra of 1 in aqueous solutions with incremental addition of CrO_4^{2-} anion	5
25	5 Fig. S15 The changes of emission spectra of 1 in aqueous solutions with incremental addition of $Cr_2O_7^{2-}$ anion	6
	Fig. S16 The recycled tests for 1 to detect the (a) CrO_4^{2-} anion and (b) $Cr_2O_7^{2-}$ anion for 5 times	.6
	Table S1 Crystal data for 1	7
	Table S2 Selected bond lengths (Å) and angles (°) for 1.	7
	Table S3 Comparison of electrocatalytic performances of MOFs based materials for OER.	7
30) Table S4 Comparison of electrocatalytic performances of MOFs based materials for HER	7
	Table S5 Comparison of various MOFs based chemosensors for the detection of Cr(VI) anions	7

Fig. S1 Selected H₄TPTC and BIBP organic ligands in the assembly of 1.

5 **Fig. S2** The asymmetry unit of **1** with 50% probability (Symmetry codes: i 1-*x*, 2-*y*, -*z*; ii 1-*x*, 1-*y*, 1-*z*; iii *x*, 1+*y*, -1+z; iv -*x*, 1-*y*, 1-*z*.).

Fig. S3 The coordination mode of TPTC⁴⁻ ligand in 1.

Fig. S4 The binuclear $\{Co_2(COO)_2\}$ SBU in 1.

Fig. S5 The BIBP as pillars to connect the binuclear $\{Co_2(COO)_2\}$ SBUs in 1.

5

Fig. S9 Relative cyclic voltammogram profile of NF.

Fig. S10 Lines fitting plots between $v^{1/2}$ and i of NF.

Fig. S12 The fluorescence spectra of free H_4 TPTC, BIBP and 1 in solid state at room temperature.

5 Fig. S13 The luminescence intensities of 1 which were dispersed in the aqueous solution of different anions.

Fig. S14 The changes of emission spectra of 1 in aqueous solutions with incremental addition of CrO_4^{2-} anion.

Table S1 Crystal data for 1.				
Formula	C ₂₉ H ₂₁ CoN ₄ O ₅			
Formula weight	564.43			
Crystal system	Monoclinic			
Space group	P21/c			
$a(\dot{A})$	10.3161(3)			
$b(\dot{A})$	14.7176(4)			
$c(\dot{A})$	16.3208(4)			
α (°)	90			
β (°)	98.968(3)			
γ (°)	90			
$V(Å^3)$	2447.67(12)			
Z	4			
D_{calcd} (Mg/m ³)	1.532			
$\mu(\mathrm{mm}^{-1})$	0.751			
Temperature (K)	295(2)			
<i>F</i> (000)	1160			
R _{int}	0.0521			
$R_1 \left[I > 2\sigma(I) \right]$	0.0465			
$wR_2[I > 2\sigma(I)]$	0.1172			
Gof	1.044			

5 Table S2 Selected bond lengths (Å) and angles (°) for 1.

	0	0					
Co(1)-O(1)	2.036(2)	$O(2)^{\#1}-Co(1)-O(4)^{\#3}$	149.54(8)	$N(1)-Co(1)-N(4)^{\#2}$	178.24(9)	$O(1)-Co(1)-O(4)^{\#3}$	99.40(8)
Co(1)-O(2)#1	2.0704(2)	$N(4)^{#2}-Co(1)-O(4)^{#3}$	95.39(9)	O(1)-Co(1)-O(3)#3	158.38(8)	O(1)-Co(1)-N(4)#2	86.09(9)
Co(1)-N(1)	2.118(2)	$O(2)^{\#1}-Co(1)-N(1)$	93.31(9)	$O(2)^{\#1}-Co(1)-O(3)^{\#3}$	90.43(8)	$N(1)-Co(1)-O(4)^{\#3}$	85.32(9)
$Co(1)-N(4)^{\#2}$	2.132(2)	$O(3)^{\#3}$ -Co(1)-O(4)^{\#3}	59.14(7)	N(1)-Co(1)-O(3) ^{#3}	88.76(9)	$O(1)-Co(1)-O(2)^{\#1}$	111.06(9)
Co(1)-O(3)#3	2.208(2)	$O(2)^{\#1}-Co(1)-N(4)^{\#2}$	86.90(9)	$N(4)^{#2}-Co(1)-O(3)^{#3}$	92.99(8)	O(1)-Co(1)-N(1)	92.20(9)
$Co(1)-O(4)^{\#3}$	2.224(2)						
Symmetry codes: $\#1 - x + 1$, $-y + 1$, $-z + 2$; $\#2 + 1$, $y, z + 1$; $\#3 x, -y + 1/2, z + 1/2$.							

Table S3 Comparison of electrocatalytic performances of MOFs based materials for OER.

Catalyst	Substrate	Electrolyte	η_{10}	Reference
Co-BPDC/Co-BDC ₃	GCE	1 M KOH	335 mV	47
UTSA-16	GCE	1 M KOH	408 mV	48
Co-ZIF-9(III)	GCE	1 M KOH	380 mV	49
Unsaturated ZIF-67	GCE	1 M KOH	410 mV	50
CTGU-14	GCE	1 M KOH	454 mV	51
1@NF	NF	1 M KOH	377 mV	this work

Table S4 Comparison of electrocatalytic performances of MOFs based materials for HER.

Catalyst	Substrate	Electrolyte	η_{10}	Reference
Ni–ZIF	GCE	1 M KOH	218 mV	52
Fe ₂ Co-MOF	GCE	1 M KOH	221 mV	53
NiFe-MOF	NF	1 M KOH	255 mV	54
Co/Cu-MOF	GCE	1 M KOH	391 mV	55
Ni-CP	GCE	1 M KOH	422 mV	56
1@NF	NF	1 M KOH	242 mV	this work

Table S5 Comparison of various MOFs based chemosensors for the detection of Cr(VI) anions.

	Analyte	MOFs based Fluorescent Materials	Quenching constant (K_{SV} , M^{-1})	Detection Limits	Media	Ref
1	_	$[Cd_2(HDDB)(bib)_{1.5}(H_2O)]$	4.7×10^{3}	N/A	H ₂ O	
2		[Cd ₂ (HDDB)(<i>m</i> -bimb)]	2.5×10^{3}	N/A	H ₂ O	61
3		$[Cd_2(DDB)(p-bimb)]$	6.0×10^{3}	N/A	H ₂ O	
4	CrO ₄ ²⁻	$[Tb(Hbptc)(H_2O)_4]$	1.27×10^{4}	$2.36 \times 10^{-6} \text{ M}$	H ₂ O	62
5		$[Ni_{1.5}(H_2L)(bib)_{1.5}(H_2O)_2]$	3.0×10^{3}	N/A	H ₂ O	62
6		$[Pb_2(HL)(bib)_{1.5}(H_2O)]$	7.4×10^{3}	N/A	H ₂ O	05
7		$\{[Co(TPTC)_{0.5}(BIBP)] \cdot H_2O\}_n$	2.5×10^{3}	$3.42 \times 10^{-6} \text{ M}$	H ₂ O	this work
1		$[Cd_2(HDDB)(bib)_{1.5}(H_2O)]$	2.7 ×10 ⁴	N/A	H ₂ O	
2		$[Cd_2(HDDB)(m-bimb)]$	1.8×10^{4}	N/A	H ₂ O	61
3		$[Cd_2(DDB)(p-bimb)]$	2.8×10^{4}	N/A	H ₂ O	
4		$[Cd(TIPA)_2(ClO_4)_2]$	7.15×10^{4}	8 ppb	H ₂ O	62
5	$Cr_2O_7^{2-}$	$[Tb(Hbptc)(H_2O)_4]$	1.04×10^{5}	$2.88 \times 10^{-7} \text{ M}$	H ₂ O	63
6		$[Cd_3{Ir(ppy-COO)_3}_2]$	3.475× 10 ⁴	145.1 ppb	H ₂ O	64
7		$[Ni_{1.5}(H_2L)(bib)_{1.5}(H_2O)_2]$	2.9×10^{4}	N/A	H ₂ O	65
8		[Pb ₂ (HL)(bib) _{1.5} (H ₂ O)]	2.8×10^{4}	N/A	H ₂ O	05
9		$\{[Co(TPTC)_{0.5}(BIBP)] \cdot H_2O\}_n$	1.15×10^{4}	2.96 × 10 ⁻⁷ M	H ₂ O	this work