Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2021

Trial	A Er ³⁺ mol%	B Y ³⁺ mol%	C Ba ²⁺ mol%	D amount of urea	Total intensity (red + green)/a.u.
No 1	7	Q	12	(to the stoi.)	11609.91
110.1	,	0	12	1.0	11005.51
No.2	7	9	13	2.0	2370.156
No.3	7	10	14	2.2	11457.52
No.4	7	11	15	2.4	1409.297
No.5	8	8	13	2.2	18797.06
No.6	8	9	12	2.4	3664.16
No.7	8	10	15	1.8	18463.63
No.8	8	11	14	2.0	1517.362
No.9	9	8	14	2.4	12079.82
No.10	9	9	15	2.2	3731.027
No.11	9	10	12	2.0	11795.01
No.12	9	11	13	1.8	1046.207
No.13	10	8	15	2.0	200.067
No.14	10	9	14	1.8	3649.51
No.15	10	10	13	2.4	13265.6
No.16	10	11	12	2.2	1268.995
k ₁ -	6711.721	10671.71	7084.52	8692.315	/
k2 ⁻	10610.55	3353.713	8869.758	3970.65	/
k₃⁻	7163.016	13745.44	6525.226	8813.651	/
k₄⁻	4596.044	1310.465	5951.005	7604.719	/
R	6014.506	12434.98	2918.753	4843.001	/

Table S1 Experimental layouts and results of the orthogonal experiments L_{16} (4⁴)

Optimum conditions from L_{16} (4⁴) are: $A_2B_3C_2D_3$

(Er³⁺: Y³⁺: Ba²⁺: Na⁺ mol% = 8:10:13:69 mol%, urea dosage = 2.2 stoi.)

The bold in the sample indicates the optimal sample No. 5, and the bold in the average values of k indicate the optimal level of each factor

(The numbers in column A, B, C and D indicate the level values of the factors)

Fig. S1 Schematic illustration for the influence and formation mechanism of alkali ions introduced in NaYF₄ nanocrystals. (a) untreated NaYF₄ nanocrystals (b) Li⁺ ions enter the gap of NaYF₄ nanocrystals (c) Li⁺ ions enter the gap of NaYF₄ nanocrystals and occupy the lattice position (d) K⁺ ions occupy the lattice position of NaYF₄ nanocrystals