# **Electronic Supporting Information**

# Facile construction of an Ag<sup>0</sup>-doped Ag(I)-based coordination polymer *via* self-photoreduction strategy for enhanced visible light driven photocatalysis

Wei Jiang<sup>a,b</sup>, Mengying Lv<sup>a</sup>, Baihui Gao<sup>a</sup>, Bo Liu<sup>a,c,\*</sup>, Guosong Yan<sup>a,c</sup>, Shi Zhou<sup>a,c,\*</sup>, Chunbo Liu<sup>a,b</sup>, Wei Xie<sup>a,c</sup>, Guangbo Che<sup>a,c</sup>

<sup>a</sup>Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, P. R. China.

<sup>b</sup>College of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, P. R. China.

<sup>c</sup>Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China

\* Correspondence authors
E-mail: liubo1999@jlnu.edu.cn (Bo Liu)
E-mail: zhoushi@jlnu.edu.cn (Shi Zhou)
Fax :+86-434-3290623

#### Experimental

## Materials and characterization

All the chemical reagents were obtained commercially and used without further purification. The infrared (IR) spectrum was collected on a Nicolet iS50 FT-IR spectrometer (ThermoFisher, United States). Elemental analysis (C, H, N) was performed on a VarioEL III Elemental Analyzer (Elementar, Germany). The crystalline structures of the materials were analyzed by PXRD (Rigaku, Dmax 2000) with CuK $\alpha$  radiation ( $\lambda = 1.5406$  Å) at room temperature in the range of 5°-80°. The morphology and size of samples were observed by SEM (Hitachi, Regulus 8100) a. The XPS characterizations were obtained on an ESCALAB250XI electron spectrometer (VG Scientific,

America). The UV-vis diffuse reflectance spectra (DRS) were collected by a UV-vis spectrophotometer (UV-2550, Shimidazu). Photocurrents and EIS were recorded using a PGSTAT-302N electrochemical workstation. The photoluminescence (PL) spectra were measured using a F4500 (Hitachi, Japan) photoluminescence detector with an excitation wavelength of 300 nm. ESR analyses were performed on the Bruker EPR JES-FA200 spectrometer.

#### **Photoelectrochemical measurements**

Photoelectrochemical performances of the prepared photo-anodes were recorded on an electrochemical work station (CHI760E) with a standard three electrode system. 0.5 M Na<sub>2</sub>SO<sub>4</sub> solution was used as the electrolyte. A 300W Xe lamp (Beijing PerfectLight) was used as a light source. Transient photocurrent measurements at a constant bias (0.8 V) with chopped illumination were also conducted to examine the steady-state photocurrent densities of the photoanodes. Electrochemical impedance spectra (EIS) were carried out in the frequency range of 1-10<sup>5</sup> Hz. The Mott-Schottky measurement was performed at the frequency of 1000 Hz.

#### X-ray crystallorgraphy

Crystal data was collected Bruker Smart Apex II CCD diffractometer with graphitemonochromatic MoK $\alpha$  radiation ( $\lambda = 0.71073$  Å) at room temperature. The structures were solved by direct methods of *SHELXS-2014* and refined on  $F^2$  by full-matrix least-squares using the *SHELXL-2014 within WINGX* [1,2]. All the calculations were performed under *WINGX* program. All non-hydrogen atoms were refined anisotropically, and the hydrogen atoms of organic ligands and water molecules were generated geometrically. The crystallographic data for **JLNU-90** is listed in Table S1, selected bond lengths and bond angles are summarized in Table S2.

| Compound          | JLNU-90                      |
|-------------------|------------------------------|
| Empirical formula | $C_{32}H_{30}N_7O_{8.5}Ag_2$ |
| Formula weight    | 864.37                       |
| Crystal system    | Triclinic                    |
| Space group       | <i>P</i> -1                  |
| <i>a</i> (Å)      | 11.388(3)                    |

Table S1 Selected crystallographic data for JLNU-90

| <i>b</i> (Å)                      | 12.621(3)               |
|-----------------------------------|-------------------------|
| c (Å)                             | 14.493(4)               |
| α (°)                             | 100.520(5)              |
| β (°)                             | 109.121(5)              |
| γ (°)                             | 97.132(5)               |
| $V(Å^3)$                          | 1896.8(8)               |
| Z                                 | 2                       |
| Goodness-of-fit on F <sup>2</sup> | 0.589                   |
| Refins collected/unique           | 13005                   |
| $\theta$ Range (°)                | 3.06-51.3               |
| $R (I > 2\sigma(I))$              | $R_1 = 0.0531$ ,        |
|                                   | wR <sub>2</sub> =0.1597 |
| R (all data)                      | $R_1 = 0.1075$ ,        |
|                                   | wR <sub>2</sub> =0.2046 |
| CCDC                              | 2079891                 |

Table S2 Selected bond distances (Å) and angles (°) for JLNU-90.

| Ag(1)-N(2) <sup>#1</sup>       | 2.140(5)   | Ag(2)-N(3) <sup>#1</sup>       | 2.170(4)   |
|--------------------------------|------------|--------------------------------|------------|
| Ag(1)-N(1)                     | 2.159(4)   | Ag(2)-N(4)                     | 2.180(4)   |
| Ag(1)-O(3)                     | 2.262(4)   | Ag(2)-O(4)                     | 2.591(4)   |
| N(2) <sup>#1</sup> -Ag(1)-N(1) | 174.92(16) | N(3) <sup>#1</sup> -Ag(2)-N(4) | 168.83(15) |
| N(2) <sup>#1</sup> -Ag(1)-O(3) | 91.39      | N(3)-Ag(2)-O(4)                | 95.30(18)  |
| N(1)-Ag(1)-O(3)                | 93.66      | N(4)-Ag(2)-O(4)                | 91.07(17)  |

Symmetry code: #1 1+x, y, z.



Fig. S1. TG curve of the as-synthesized JLNU-90.

The guest molecules in **JLNU-90** were evaluated through TG analysis (Fig. S1). The lost weight of before 100 °C corresponds to the release of wo acetonitrile and two and a half water molecules (obsd 18.15 %, calcd 17.23 %). The second weight loss occurs from 180 °C should be attributed to the decomposition of organic ligands.



Fig. S2. The optical photographs of JLNU-90 and JLNU-90/1.5.



Fig. S3. The XPS survey spectrum of JLNU-90/1.5.

| Catalysts                                                                                            | Light source             | MB<br>concentration<br>(mg/L) | Dosage<br>of<br>catalysts | Time<br>(min) | Degradation<br>efficiency<br>(%) | k value<br>(min <sup>-1</sup> ) | Ref.         |
|------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------|---------------------------|---------------|----------------------------------|---------------------------------|--------------|
| JLNU-90/1.5                                                                                          | 10 W<br>LED<br>(vis)     | 10                            | 20 mg                     | 120           | 70                               | 0.00896                         | This<br>work |
| [Ag(HIPA)(L)] <sub>n</sub>                                                                           | 500 W<br>Hg lamp<br>(UV) | 10                            | 0.01<br>mmol              | 150           | 95.9                             | 0.0177                          | 3            |
| [Ag(L)(HNTP)] <sub>n</sub>                                                                           | 500 W<br>Hg lamp<br>(UV) | 10                            | 0.01<br>mmol              | 240           | 93.5                             | 0.0106                          | 4            |
| $[Ag_2(dmt)_2(tph)]_n$                                                                               | 300 W<br>Hg lamp<br>(UV) | 3.2                           | 100 mg                    | 130           | 96                               | 0.015                           | 5            |
| [Ag <sub>2</sub> (dmt) <sub>2</sub> (oxalate)] <sub>n</sub>                                          | 300 W<br>Hg lamp<br>(UV) | 3.2                           | 100 mg                    | 130           | ~80                              | 0.011                           | 5            |
| $[\mathrm{Ag}_2(\mathrm{dmt})_4(\mathrm{SO}_4)]\cdot_2(\mathrm{dmt})\cdot_2(\mathrm{H}_2\mathrm{O})$ | 300 W<br>Hg lamp<br>(UV) | 3.2                           | 100 mg                    | 130           | ~68                              | 0.007                           | 5            |
| $[Ag_4(L^1)_2(HSiW^{VI}_{11}V^VO_{40})] \sim 25H_2O$                                                 | UV                       | 6.4                           | 150 mg                    | 120           | 93                               | -                               | 6            |
| $[Ag_4(L^2)_2(H_2O)_2(PW^{VI}_{11}V^VO_{40})]\cdot 2H_2$<br>O                                        | UV                       | 6.4                           | 150 mg                    | 120           | 87.3                             | -                               | 6            |

Table S3. Comparison of Ag(I)-based coordination polymers



Fig. S4. (a) UV-vis DRS and (b) direct energy band gap of JLNU-90 and JLNU-90/x.



Fig. S5. PL spectra of JLNU-90 and JLNU-90/x.



Fig. S6. The Mott-Schott curve of JLNU-90.

## Reference

- 1 G. M. Sheldrick *SHELXS-2014*, *Program for the Solution of Crystal Structures* (University of Göttingen, Germany, 2014).
- 2 G. M. Sheldrick *SHELXL-2014*, *Program for the Refinement of Crystal Structure* (University of Göttingen, Germany, 2014).
- 3 A. Li, Z. Hao, C. Han and G. Cui, Appl. Organomet. Chem., 2019, 34, e5313.
- 4 H. Zhu, D. Liu, Y.-H. Li and G.-H. Cui, *Inorg. Chem. Commun.*, 2019, **108**, 107539.
- S. Kulovi, S. Dalbera, S. Das, E. Zangrando, H. Puschmann and S. Dalai, *ChemistrySelect*, 2017, 2, 9029–9036.
- 6 X.-L. Wang, J.-J. Cao, G.-C. Liu, A.-X. Tian, J. Luan, H.-Y. Lin, J.-W. Zhang and N. Li, *CrystEngComm*, 2014, **16**, 5732–5740.