Supporting Information

A highly stable Zn coordination polymer exhibiting pH-dependent fluorescence and as a visually ratiometric and on-off fluorescence sensor

Po-Min Chuang and Jing-Yun Wu*

Department of Applied Chemistry, National Chi Nan University, Nantou 545, Taiwan. E-mail: jyunwu@ncnu.edu.tw

Fig. S1 Coordination modes of 1,4-ndc^{2–} ligand in 1: (left) the μ_4 -bridging mode with two carboxylate groups both in a bidentate syn,syn-bridging mode; (right) the μ_3 -bridging mode with one carboxylate group in a monodentate mode and the other one in a bidentate syn,anti-bridging mode.

Fig. S2 Perspective view of intramolecular π - π interactions between two neighboring carbazole moieties and between two neighboring naphthalene moieties in **1**.

Fig. S3 TG diagram of 1.

Fig. S4 Low-pressure N_2 and CO_2 adsorption/desorption isotherms of activated 1.

Fig. S5 XRPD patterns of **1**: simulated, as-synthesized, after CO₂ adsorption, and after immersion in H₂O, DMAc at room temperature, and boiling H₂O for 1 day.

Fig. S6 ¹H NMR spectrum of the supernatant of 1 dispersed in D_2O at room temperature for 1 day.

Fig. S7 Fluorescence emission spectra of Cz-3,6-bpy in different pH aqueous solutions ranging from 1 to 13 upon excitation at 350 nm.

Fig. S8 Fluorescence emission spectra of 1,4-H₂ndc in different pH aqueous solutions ranging from 1 to 13 upon excitation at 350 nm.

Fig. S9 Fluorescence spectra of free Cz-3,6-bpy ligand in H₂O suspension before and after addition of different metal ions at 1.0 mM upon excitation at 350 nm.

Fig. S10 Plots of fluorescence intensity of λ = 426 nm (I₄₂₆) versus metal ion concentration for **1** suspension in H₂O at 0–0.10 mM upon excitation at 350 nm. The following table shows the relevant parameters for LOD calculation for **1** suspension in H₂O toward Fe³⁺, Al³⁺, and Cr³⁺ ions.

Fig. S11 Fluorescence spectra of **1** suspension in H₂O before and after addition of different interfering metal ions at 1.0 mM and the concomitant addition of the same concentration of Fe³⁺ upon excitation at 350 nm.

Fig. S12 Fluorescence spectra of **1** suspension in H₂O before and after addition of different interfering metal ions at 1.0 mM and the concomitant addition of the same concentration of Al³⁺ upon excitation at 350 nm.

Fig. S13 Fluorescence spectra of **1** suspension in H₂O before and after addition of different interfering metal ions at 1.0 mM and the concomitant addition of the same concentration of Cr³⁺ upon excitation at 350 nm.

Fig. S14 XRPD patterns of **1** in various situations: simulated, as-synthesized, after immersion in H₂O for 1 day, and after treated with Fe³⁺, Al³⁺, Cr³⁺, CrO₄²⁻, and Cr₂O₇²⁻ in H₂O for 1 day.

Fig. S15 IR spectra of 1 before and after treated with Fe³⁺, Al³⁺, and Cr³⁺ in H₂O for 1 day.

Fig. S16 O 1*s* XPS spectra of as-synthesized **1** and Fe³⁺-, Al³⁺-, and Cr³⁺-treated **1**.

Fig. S17 (a) Fe 2*p* (b) Al 2*p*, and (c) Cr 2*p* XPS spectra of Fe³⁺-, Al³⁺-, and Cr³⁺-treated **1**, respectively.

Fig. S18 Spectra overlap between the normalized absorption spectra of all tested metal ions in aqueous solutions and the normalized emission spectra of **1** suspension in H₂O upon excitation at 350 nm.

1100 1000 900 600 500 400 0.00	0 0.01 0.02 0.03 0.04 Concentration (mM)	CrO_4^{2-} $Cr_2O_7^{2-}$
	CrO4 ²⁻	Cr ₂ O ₇ ²⁻
Blank reading 1	1061	1051
Blank reading 2	1067	1050
Blank reading 3	1063	1039
Blank reading 4	1068	1044
Blank reading 5	1058	1045
Standard deviation (σ)	4.159	4.354
/ Slope / (k), mM ⁻¹	11394	7388
R^2	0.98478	0.99757
LOD (3 <i>σ/k</i>), μM	1.10	1.77

Fig. S19 Plots of fluorescence intensity versus anion concentration for **1** suspension in H₂O at 0–0.05 mM upon excitation at 350 nm. The following table shows the relevant parameters for LOD calculation for **1** suspension in H₂O toward $CrO_{4^{2-}}$ and $Cr_{2}O_{7^{2-}}$ ions.

Fig. S20 Spectra overlap between the absorption spectra of all tested anions in aqueous solutions and the normalized emission spectra of **1** suspension in H₂O upon excitation at 350 nm.

Fig. S21 Plots of fluorescence intensity versus nitroaromatic concentration for **1** suspension in DMAc at 0–0.05 mM upon excitation at 295 nm. The following table shows the relevant parameters for LOD calculation for **1** suspension in DMAc toward various nitroaromatic analytes.

Fig. S22 HOMO and LUMO energies for nitro analytes and Cz-3,6-bpy.

Fig. S23 XRPD patterns of **1** in various situations: simulated, as-synthesized, after immersion in DMAc for 1 day, and after treated with NB, 1,4-DNB, 4-NP, and 4-NT in DMAc for 1 day.

Fig. S24 Spectra overlap between the normalized absorption spectra of all tested nitro compounds in DMAc solutions and the normalized emission spectra of **1** suspension in DMAc upon excitation at 295 nm.