Supporting Information

Hydrogen bond synthons affect coordination geometry of d10-metal halide complexes: Synthetic methods, theoretical studies and supramolecular architectures

Zahra Nezhadali Baghan¹, Alireza Salimi^{1,*}, Hossein Eshtiagh-Hosseini¹, Allen G. Oliver²

¹Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran ²Molecular Structure Facility, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA

Description	Page No.
Table S1. Selected bond distances (Å) and angles (°) for 1	S2
Table S2. Selected bond distances (Å) and angles (°) for 2	S3
Table S3. Selected bond distances (Å) and angles (°) for 3	S4
Table S4. Selected bond distances (Å) and angles (°) for 4	S5-S6
Table S5. Selected bond distances (Å) and angles (°) for 5	S7
TableS6. π interaction parameters (Å and °) for compound 1-5	S8
Table S7. Angles between Py, Pz and Amide plane in compounds 1-5.	S9
Table S8. Mercury (II) halide (halide= Cl(1-37), Br(38-76), and I(77-100)) coordination compounds containing pyrazine-type organic ligand.	S10-S13
Figure S1. ORTEP diagram of compound 1 , showing coordination geometry. Ellipsoids are drawn at 50% probability level. Symmetry codes: i: 1+x, y, z, ii=-1+x, y, z.	S14
Figure S2. ORTEP diagram of compound 2 , showing coordination geometry. Ellipsoids are drawn at 50% probability level. Symmetry codes: i: 1+x, y, z, ii=-1+x, y, z.	S14
Figure S3. ORTEP diagram of compound 3 , showing coordination geometry. Ellipsoids are drawn at 50% probability level. Symmetry code: $i = 2-x$, $-1/2+y$, $1.5-z$.	S15
Figure S4. ORTEP diagram of compound 4 , showing coordination geometry. Ellipsoids are drawn at 50% probability level.	S15
Figure S5. ORTEP diagram of compound 5 , showing coordination geometry. Thermal ellipsoids are drawn at 50% probability level. Symmetry codes: i: 2-x, -y, z, ii: x, y, 1+ z, iii: 2-x, -y, 1+z.	S16
Figure S6. Histogram plot for Hg-Cl distance from a CSD search.	S16
Figure S7. Histogram plot for Hg-Br distance from a CSD search.	S17
Figure S8. Electrostatic surface potentials (ESP) for ligand.	S17
Figure S9. Hirshfeld surface mapped with d_{norm} for compound 1(top) and for compound 2 (bottom), showing C-HO, C-HN, N-HN (left) and C-HCl (right) hydrogen bonds.	S18
Figure S10. Hirshfeld surfaces mapped with shape index (red and blue triangles has been shown by black circle), curvedness and decomposed finger print plots to C-C contacts showing relative contribution of π π stacking interactions for compound 1(a), 2(b), (left to right)	S19

Contents

Figure S11. (a) Hirshfeld surface mapped with d_{norm} , showing C-HO (left) and C-HI (right) hydrogen bonds (b) Hirshfeld surface mapped with shape index (left) and curvedness (right) for compound 3.	S20
Figure S12. Hirshfeld surface mapped with <i>d</i> _{norm} , showing (a) C19-H19O1 and N2-H2NCl1, (b) C10H10O2, C18H18N7 (c) N6H6NCl1, C20H20N4, C19H19O1 hydrogen bonds for compound 4.	S21
Figure S13. Hirshfeld surface mapped with (a) d_{norm} , showing C-HO, C-HN, N-HN hydrogen bonds (b) shape index (c) curvedness and (d) decomposed finger print plots to C-C contacts for compound 5.	S22
Figure S14. View of the best-fit profile of the Rietveld refinement of compound 6	S22
Figure S15. View of the best-fit profile of the Rietveld refinement of compound 9	S23
Fig. S16-S28 IR Spectra of compounds.	S23-S29
References	S30-S31

Table S1.	Bond lengths	(Å) and	l angles (°)) for com	1 bnuoa
		(, , , , , , , , , , , , , , , , , , ,			

Bond distances	atom-atom	distance	atomatom	distance	atomatom	distance
bond distances						
	Hg(1)-CI(1)	2.3708(9)	C(4)-C(5)	1.378(5)	N(3)-C(10)	1.334(5)
	Hg(1)-N(1)	2.431(3)	C(5)-H(5)	0.9500	N(4)-C(9)	1.335(5)
	Cl(2)-Hg(1)#2	2.9592(9)	C(7)-C(8)	1.383(5)	C(1)-C(2)	1.382(5)
	N(1)-C(1)	1.344(5)	C(9)-C(10)	1.398(5)	C(2)-C(3)	1.382(5)
	N(2)-C (6)	1.357(5)	C(10)-H(10)	0.9500	C(3)-H(3)	0.9500
	N(2)-H(2N)	0.83(4)	Hg(1)-Cl(2)	2.3774(9)	C(4)-H(4)	0.9500
	N(3)-C(7)	1.337(5)	Hg(1)-Cl(2)#1	2.9592(9)	C(6)-C(7)	1.508(5)
	N(4)-C(8)	1.337(5)	O(1)-C(6)	1.224(4)	C(8)-H(8)	0.9500
	C(1)-H(1)	0.9500	N(1)-C(5)	1.345(5)	C(9)-H(9)	0.9500
	C(3)-C(4)	1.389(5)	N(2)-C(2)	1.415(5)		
Bond angles	atom-atom-atom	angle	atom-atom-atom	angle	atom-atom-atom	
	Cl(1)-Hg(1)-Cl(2)	167.26(3)	O(1)-C(6)-N(2)	124.4(4)	N(1)-C(1)-C(2)	122.5(3)
	Cl(2)-Hg(1)-N(1)	96.42(8)	N(2)-C(6)-C(7)	115.9(3)	C(2)-C(1)-H(1)	118.7
	Cl(2)-Hg(1)-Cl(2)#1	90.41(3)	N(3)-C(7)-C(6)	119.2(3)	C(1)-C(2)-N(2)	117.7(3)
	Hg(1)-Cl(2)-Hg(1)#2	90.41(3)	N(4)-C(8)-C(7)	122.2(3)	C(2)-C(3)-C(4)	118.1(3)
	C(1)-N(1)-Hg(1)	121.9(2)	C(7)-C(8)-H(8)	118.9	C(4)-C(3)-H(3)	120.9
	C(6)-N(2)-C(2)	125.4(3)	N(4)-C(9)-H(9)	118.9	C(5)-C(4)-H(4)	120.2
	C(2)-N(2)-H(2N)	121(3)	N(3)-C(10)-C(9)	121.9(3)	N(1)-C(5)-C(4)	122.4(3)
	C(9)-N(4)-C(8)	115.6(3)	C(9)-C(10)-H(10)	119.0	C(4)-C(5)-H(5)	118.8
	N(1)-C(1)-H(1)	118.7	Cl(1)-Hg(1)-N(1)	96.31(8)	O(1)-C(6)-C(7)	119.7(3)
	C(1)-C(2)-C(3)	119.4(3)	Cl(1)-Hg(1)-Cl(2)#1	89.54(3)	N(3)-C(7)-C(8)	122.5(3)
	C(3)-C(2)-N(2)	122.8(3)	N(1)-Hg(1)-Cl(2)#1	88.00(7)	C(8)-C(7)-C(6)	118.3(3)
	C(2)-C(3)-H(3)	120.9	C(1)-N(1)-C(5)	118.0(3)	N(4)-C(8)-H(8)	118.9
					1	

C(5)-C(4)-C(3)	119.5(4)	C(5)-N(1)-Hg(1)	120.1(2)	N(4)-C(9)-C(10)	122.2(3)
C(3)-C(4)-H(4)	120.2	C(6)-N(2)-H(2N)	113(3)	C(10)-C(9)-H(9)	118.9
N(1)-C(5)-H(5)	118.8	C(10)-N(3)-C(7)	115.6(3)	N(3)-C(10)-H(10)	119.0

Symmetry transformations used to generate equivalent atoms: #1 x+1,y,z #2 x-1,y,z

Table S2. Bond lengths (Å) and angles (°) for compound 2.

Bond distances	atom-atom	distance	atom-atom	distance	atom-atom	distance
	Hg(1)-N(4)	2.429(3)	C(5)-H(5)	0.9500	N(3)-C(4)	1.339(6)
	Hg(1)-Br(1)	2.4917(5)	C(6)-C(11)	1.395(6)	N(4)-C(7)	1.343(5)
	Br(1)-Hg(1)#2	3.0561(5)	C(9)-C(10)	1.378(6)	C(1)-C(2)	1.507(6)
	N(1)-C(1)	1.355(5)	C(10)-C(11)	1.383(6)	C(3)-H(3)	0.9500
	N(1)-H(1N)	0.80(5)	C(11)-H(11)	0.9500	C(4)-H(4)	0.9500
	N(2)-C(2)	1.344(5)	Hg(1)-Br(2)	2.4884(4)	C(6)-C(7)	1.392(6)
	N(3)-C(3)	1.341(5)	Hg(1)-Br(1)#1	3.0561(5)	C(7)-H(7)	0.9500
	N(4)-C(9)	1.350(5)	O(1)-C(1)	1.228(5)	C(9)-H(9)	0.9500
	C(2)-C(3)	1.380(6)	N(1)-C(6)	1.415(5)	C(10)-H(10)	0.9500
	C(4)-C(5)	1.384(6)	N(2)-C(5)	1.338(5)		
Bond angles	atom-atom-atom	angle	atom-atom-atom		atom-atom-atom	angle
	N(4)-Hg(1)-Br(2)	97.39(8)	C(7)-C(6)-C(11)	118.5(4)	O(1)-C(1)-N(1)	124.6(4)
	Br(2)-Hg(1)-Br(1)	164.073(16)	C(11)-C(6)-N(1)	123.0(4)	N(1)-C(1)-C(2)	116.1(4)
	Br(2)-Hg(1)-Br(1)#1	92.207(15)	N(4)-C(7)-H(7)	118.8	N(2)-C(2)-C(1)	118.9(4)
	Hg(1)-Br(1)-Hg(1)#2	88.889(15)	N(4)-C(9)-C(10)	121.9(4)	N(3)-C(3)-C(2)	122.5(4)
	C(1)-N(1)-H(1N)	118(4)	C(10)-C(9)-H(9)	119.0	C(2)-C(3)-H(3)	118.8
	C(5)-N(2)-C(2)	115.0(4)	C(9)-C(10)-H(10)	120.1	N(3)-C(4)-H(4)	118.9
	C(7)-N(4)-C(9)	118.6(4)	C(10)-C(11)-C(6)	118.6(4)	N(2)-C(5)-C(4)	122.6(4)
	C(9)-N(4)-Hg(1)	119.2(3)	C(6)-C(11)-H(11)	120.7	C(4)-C(5)-H(5)	118.7
	O(1)-C(1)-C(2)	119.3(4)	N(4)-Hg(1)-Br(1)	98.49(8)	C(7)-C(6)-N(1)	118.4(4)
	N(2)-C(2)-C(3)	122.4(4)	N(4)-Hg(1)-Br(1)#1	90.38(9)	N(4)-C(7)-C(6)	122.4(4)
	C(3)-C(2)-C(1)	118.7(4)	Br(1)-Hg(1)-Br(1)#1	88.889(15)	C(6)-C(7)-H(7)	118.8
	N(3)-C(3)-H(3)	118.8	C(1)-N(1)-C(6)	124.7(4)	N(4)-C(9)-H(9)	119.0
	N(3)-C(4)-C(5)	122.3(4)	C(6)-N(1)-H(1N)	118(4)	C(9)-C(10)-C(11)	119.9(4)
	C(5)-C(4)-H(4)	118.9	C(4)-N(3)-C(3)	115.2(4)	C(11)-C(10)-H(10)	120.1
	N(2)-C(5)-H(5)	118.7	C(7)-N(4)-Hg(1)	122.2(3)	C(10)-C(11)-H(11)	120.7
Symmetry transfe	ormations used to gener	ate equivalent a	atoms: #1 x+1,y,z #2 x-	1,y,z		

Bond distances	atom-atom	distance	atom-atom	distance	atom-atom	distance
	Hg(1)-N(1)	2.585(13)	C(6)-C(10)	1.36(2)	N(2)-C(4)	1.30(2)
	Hg(1)-I(1)	2.6483(12)	N(3)-C(6)	1.449(19)	C(9)-H(9)	0.9292(0)
	Hg(1)-I (2)	2.6394(12)	N(3)-C(5)	1.38(2)	C(8)-H(8)	0.9298(0)
	N(4)-Hg(1)#1	2.458(14)	O(1)-C(5)	1.134(18)	C(7)-H(7)	0.9301(0)
	Hg(1)-N(4) #2	2.458(14)	C(5)-C(4)	1.54(2)	C(10)-H(10)	0.9309(0)
	N(4)-C(9)	1.29(2)	C(4)-C(1)	1.42(2)	N(3)-H(3A)	0.8596(0)
	N(4)-C(10)	1.35(2)	C(1)- N(1)	1.36(2)	C(1)-H(1)	0.9297(0)
	C(9)-C(8)	1.38(3)	C(2)- N(1)	1.33(2)	C(2)-H(2)	0.9304(1)
	C(8)-C(7)	1.40(2)	C(2)-C(3)	1.36(2)	C(3)-H(3)	0.9294(0)
	C(6)-C(7)	1.39(2)	C(3)- N(2)	1.37(2)		
Bond angles	atom-atom-atom	angle	atom-atom-atom		atom-atom-atom	angle
	N(4)-Hg(1)-I(1)#2	98.0(3)	O(1)- C(5)- N(3)	129.7(14)	C(2)-N(1)-Hg(1)	119.(1)
	I(2)-Hg(1)-I(1)	151.70(4)	N(1)-C(1)-C(4)	118.2(15)	N(2)-C(4)-C(1)	123.9(14)
	N(4)-Hg(1)-N(1) #2	109.4(4)	N(4)-C(9)-C(8)	121.7(16)	N(1)-C(2)-C(3)	121.7(15)
	N(4)-Hg(1)-I(2)#2	101.0(3)	O(1)-C(5)-C(4)	121.8(14)	C(9)-N(4)-C(10)	120.1(15)
	N(1)- Hg(1)-I(2)	97.0(3)	N(3)-C(5)-C(4)	108.4(12)	C(6)-C(7)-C(8)	115.2(16)
	N(1)-Hg(1)-I(1)	96.2(3)	N(4)-C(10)-C(6)	121.4(16)	C(9)-C(8)-C(7)	120.9(16)
	C(5)-N(3)-C(6)	123.7(13)	C(2)-C(3)-N(2)	121.7(15)	C(1)-C(4)-C(5)	117.6(15)
	C(1)-N(1)-Hg(1)	122.3(11)	C(2)-N(1)-C(1)	118.0(14)	N(2)-C(4)-C(5)	118.4(13)
	C(9)-N(4)-Hg(1)#1	120.2(11)	C(7)-C(6)-N(3)	123.9(15)	C(4)-N(2)-C(3)	115.7(13)
	C(10)-N(4)-Hg(1)#1	119.6(11)	C(10)-C(6)-N(3)	115.5(15)	C(10)-C(6)-C(7)	120.6(15)
Symmetry transfo	ormations used to generation	ate equivalent a	1/2+v 1/2	-7 #2 2-x 1/2	9+v 1/2-z	

Table S3. Bond lengths (Å) and angles (°) for compound 3.

Bond distances	atom-atom	distance	atom-atom	distance	atom-atom	distance
	Zn(1)-N(5)	2.0436(13)	C(9)-H(9)	0.9500	N(6)-H(6N)	0.852(19)
	Zn(1)-Cl(2)	2.2206(5)	C(11)-C(12)	1.393(2)	N(7)-C(18)	1.340(2)
	O(1)-C(6)	1.2229(19)	C(12)-C(13)	1.396(2)	N(8)-C(17)	1.336(2)
	N(1)-C(5)	1.340(2)	C(13)-H(13)	0.9500	C(1)-H(1)	0.9500
	N(2)-C(6)	1.355(2)	C(14)-H(14)	0.9500	C(3)-C(4)	1.377(2)
	N(2)-H(2N)	0.80(2)	C(16)-C(17)	1.501(2)	C(4)-C(5)	1.386(2)
	N(3)-C(8)	1.337(2)	C(18)-H(18)	0.9500	C(5)-H(5)	0.9500
	N(4)-C(7)	1.338(2)	C(19)-H(19)	0.9500	C(7)-C(8)	1.386(2)
	N(5)-C(11)	1.3468(19)	Zn(1)-N(1)	2.0497(12)	C(9)-C(10)	1.383(2)
	N(6)-C(12)	1.4029(19)	Zn(1)-Cl(1)	2.2309(4)	C(10)-H(10)	0.9500
	N(7)-C(19)	1.331(2)	O(2)-C(16)	1.2219(19)	C(11)-H(11)	0.9500
	N(8)-C(20)	1.335(2)	N(1)-C(1)	1.3458(19)	C(13)-C(14)	1.383(2)
	C(1)-C(2)	1.392(2)	N(2)-C(2)	1.407(2)	C(14)-C(15)	1.382(2)
	C(2)-C(3)	1.394(2)	N(3)-C(9)	1.335(2)	C(15)-H(15)	0.9500
	C(3)-H(3)	0.9500	N(4)-C(10)	1.335(2)	C(17)-C(18)	1.385(2)
	C(4)-H(4)	0.9500	N(5)-C(15)	1.342(2)	C(19)-C(20)	1.382(2)
	C(6)-C(7)	1.502(2)	N(6)-C(16)	1.360(2)	C(20)-H(20)	0.9500
	C(8)-H(8)	0.9500				
Bond angles	atom-atom-atom	angle	atom-atom-atom	angle	atom-atom-atom	angle
	N(5)-7n(1)-N(1)	103 66(5)	C(11)-C(12)-N(6)	122 73(14)	C(4)-C(3)-H(3)	120 5
	N(3) = 2n(1) - n(1)	109 18(4)	C(14)-C(13)-C(12)	119 29(14)	C(3)-C(4)-C(5)	119 59(15)
	N(1) - 2n(1) - Cl(1)	106.93(4)	C(12)-C(13)-H(13)	120.4	C(5)-C(4)-H(4)	120.2
	C(5)-N(1)-C(1)	110.33(4)	C(12)-C(13)-H(13)	120.4	N(1)-C(5)-H(5)	110.2
	C(3) - N(1) - C(1)	113.37(13) 122.64(10)	N(5)-C(15)-C(14)	120.5	O(1)-C(6)-N(2)	125 09(15)
	C(6) - N(2) - H(2N)	115 1(11)	C(14)-C(15)-H(15)	119 0	N(2)-C(6)-C(7)	113 37(13)
	C(9) - N(3) - C(8)	115 86(16)	O(2)-C(16)-C(17)	121 35(14)	N(2) = C(3) = C(5)	117 28(14)
	C(15) - N(5) - C(11)	119 53(13)	N(8)-C(17)-C(18)	121.33(14)	N(3)-C(8)-C(7)	121 46(16)
	C(11) - N(5) - 7n(1)	120 34(10)	C(18) - C(17) - C(16)	119 /0(13)	C(7) - C(8) - H(8)	119 3
	C(16)-N(6)-H(6N)	116 5(12)	$N(7)_{-}(18)_{-}H(18)$	110 1	N(3)-C(0)-H(0)	118 5
	C(19)-N(7)-C(18)	115 72(17)	N(7) - C(10) - C(20)	122 <u>47(15)</u>	$N(\Delta) - C(10) - C(0)$	120 92/15)
	$N(1)_C(1) C(2)$	121 72(14)	C(20) = C(10) = U(10)	118 Q	$C(0)_C(10) \sqcup (10)$	110 5
	$C(2) C(1) \Box(1)$	110 1	P(3) = C(30) = P(30)	110.0	N(E) C(11) U(11)	110.0
	$C(2) - C(1) - \Pi(1)$	113.1	$N(6) - C(20) - \Pi(20)$	106.00(4)	N(3) - C(11) - H(11)	119.2
	L(1)-L(2)-N(2)	123.06(14)	w(5)-2n(1)-Cl(2)	106.99(4)	C(11)-C(12)-C(13)	118.57(14)

Table S4. Bond lengths (Å) and angles (°) for compound 4.

C(4)-C(3)-C(2)	118.90(14)	N(5)-Zn(1)-Cl(1)	111.97(4)	C(13)-C(12)-N(6)	118.67(13)
C(2)-C(3)-H(3)	120.5	Cl(2)-Zn(1)-Cl(1)	117.259(17)	C(14)-C(13)-H(13)	120.4
C(3)-C(4)-H(4)	120.2	C(5)-N(1)-Zn(1)	117.94(10)	C(15)-C(14)-C(13)	119.03(14)
N(1)-C(5)-C(4)	121.67(14)	C(6)-N(2)-C(2)	126.87(14)	C(13)-C(14)-H(14)	120.5
C(4)-C(5)-H(5)	119.2	C(2)-N(2)-H(2N)	118.0(14)	N(5)-C(15)-H(15)	119.0
O(1)-C(6)-C(7)	121.51(14)	C(10)-N(4)-C(7)	116.51(14)	O(2)-C(16)-N(6)	124.91(14)
N(4)-C(7)-C(8)	122.17(15)	C(15)-N(5)-Zn(1)	119.91(10)	N(6)-C(16)-C(17)	113.70(13)
C(8)-C(7)-C(6)	120.52(14)	C(16)-N(6)-C(12)	126.31(13)	N(8)-C(17)-C(16)	118.17(13)
N(3)-C(8)-H(8)	119.3	C(12)-N(6)-H(6N)	117.1(13)	N(7)-C(18)-C(17)	121.72(14)
N(3)-C(9)-C(10)	123.03(16)	C(20)-N(8)-C(17)	115.59(14)	C(17)-C(18)-H(18)	119.1
C(10)-C(9)-H(9)	118.5	N(1)-C(1)-H(1)	119.1	N(7)-C(19)-H(19)	118.8
N(4)-C(10)-H(10)	119.5	C(1)-C(2)-C(3)	118.67(14)	N(8)-C(20)-C(19)	122.06(15)
N(5)-C(11)-C(12)	121.51(14)	C(3)-C(2)-N(2)	118.27(14)	C(19)-C(20)-H(20)	119.0
C(12)-C(11)-H(11)	119.2				

Bond	atom-atom	distance	atom-atom	distance	atom-atom	distance
distances						
	N(1) -Cd(1)	2.375(7)	C(2) -C(1)	1.398(12)	C(5)-C(4)	1.385(12)
	Cd(1)-N(1) #1	2.375(7)	C(2)-C(3)	1.393(12)	N(3)-C(8) #4	1.341(14)
	Cd(1)-I(1) #2	2.962(1)	C(4) -C(3)	1.394(11)	C(9) -N(3)	1.340(14)
	Cd(1)-I(1) #3	2.962(1)	N(2)-C(6)	1.360(12)	N(4)-C(10) #5	1.343(13)
	Cd(1)-I(1) #1	2.9715(10)	C(6)-O(1)	1.226(13)	C(8)-N(3) #5	1.341(14)
	Cd(1)-I(1)	2.9716(10)	C(6)-C(7)	1.505(12)	C(10)-N(4) #4	1.343(13)
	l(1)-Cd(1)	2.9621(10)	C(2)-N(2)	1.409(11)	C(9)-C(10)	1.372(15)
	C(7)-N(4)	1.333(13)	N(1)-C(5)	1.345(11)		
	C(7)-C(8)	1.394(14)	N(1)-C(1)	1.345(10)		
Bond angles	atom-atom-atom	angle	atom-atom-atom	angle	atom-atom-atom	angle
	N(1)-Cd(1)-N(1)#1	179.6(6)	C(5)- N(1) -C(1)	119.2(7)	C(2)-C(3)-C(4)	118.8(8)
	N(1)-Cd(1)-I(1) #1#2	90.7(2)	C(5)-N(1)-Cd(1)	119.5(5)	O(1)-C(6)-N(2)	124.4(9)
	N(1)-Cd(1)-I(1) #2	89.6(2)	C(1)-N(1)-Cd(1)	121.3(6)	O(1)-C(6)-C(7)	120.0(9)
	N(1)-Cd(1)-I(1) #1#3	89.6(2)	C(3)-C(2)-C(1)	119.2(8)	N(2)-C(6)-C(7)	115.5(9)
	N(1)-Cd(1)-I(1) #3	90.7(2)	N(1)-C(5)-C(4)	122.5(8)	N(4)-C(7)-C(8)	123.0(9)
	C(6)-N(2)-C(2)	124.7(8)	C(3)-C(2)-N(2)	119.2(8)	N(4)-C(7)-C(6)	119.5(9)
	l(1)-Cd(1)-l(1) #2#3	94.39(4)	C(5)-C(4)-C(3)	118.8(8)		
	N(1)-Cd(1)-I(1) #1#1	89.3(2)	C(7)-N(4)-C(10)#5	115.0(9)		
	N(1)-Cd(1)-I(1) #1	90.4(2)	C(1)-C(2)-N(2)	121.6(8)		
	I(1)-Cd(1)-I(1) #2#1	179.80(4)	N(1)-C(1)-C(2)	121.4(8)		
	I(1)-Cd(1)-I(1) #3#1	85.804(16)	N(3)-C(9)-C(10)	122.5(9)		
	N(1)-Cd(1)-I(1) #1	90.4(2)	C(9)- N(3) -C(8)#4	115.8(9)		
	N(1)-Cd(1)-I(1)	89.3(2)	N(3)-C(8)-C(7) #5	121.1(10)		
	I(1)-Cd(1)-I(1) #2	85.801(16)	N(4)-C(10)-C(9)#4	122.5(10)		
	C(8)-C(7)-C(6)	117.5(9)				
	l(1)-Cd(1)-l(1) #3	179.80(4)				
	l(1)-Cd(1)-l(1) #1	94.00(4)				
	Cd(1)-I(1)-Cd(1) #6	85.799(16)				
Symmetry tran	sformations used to gen	erate equivalen	t atoms: #1 2-x, -y, z	# 2 x, y, 1+z #	3 2-x, -y, 1+z #4 1/4	+x, 1/4-y, 1/4+z
#5 -1/4+x, 1/4-	y, -1/4+z #6 x, y, -1+z					

Table S5. Bond lengths (Å) and angles (°) for compound 5.

Compound	ππ	d _{cg-cg}	$d_{plane-plane}$	α	γ,β	d _{offset}
$[HgCl_2(L)]_n(1)$	π _{ργ} π _{ργ} ^a	3.8092(4)	3.5907	0.000(162)	19.50	1.27
	$\pi_{pz}\pi_{pz}{}^a$	3.8092(4)	3.3300	0.000(129)	29.05	1.85
[HgBr ₂ (L)] _n (2)	$\pi_{py}\pi_{py}{}^a$	3.9055(4)	3.6786	0.000(177)	19.62	1.31
	$\pi_{pz}\pi_{pz}{}^a$	3.9055(4)	3.4177	0.000(176)	28.94	1.89
[Hgl ₂ (L)] _n (3)	halogen $\pi_{pz}{}^a$	3.9233(2)	3.6576	75.132(1)	68.79	1.42
	C5O1π _{py}	3.5441(1)	3.534	4.30	-	0.27
[ZnCl ₂ (L)] _n (5)	$\pi_{py}\pi_{py}{}^{b}$	3.7474(3)	3.7162	0.000(175)	7.40	0.48
	$\pi_{py}\pi_{py}{}^{c}$	3.4374(2)	3.4032	0.000(81)	8.09	0.48
	C6O1 π_{pz}^{d}	3.8853(3)	3.7867	12.93	-	0.87
	C16O2π _{pz} ^e	3.8293(3)	3.6118	19.40	-	1.27
[Cdl ₂ (L)] _n (4)	$\pi_{py}\pi_{py}{}^f$	4.0392(5)	4.0207	0.000	5.48	0.38
	$\pi_{pz}\pi_{pz}{}^f$	4.0392(5)	3.5224	0.000(9)	29.30	1.97
	Symmet	ry codes: ^a -1+x, y	, z. ^b -x, 1-γ, 2-z.	^c -x, 1-y, 1-z. ^d 1-x, -	у, 2-z. ^е 1-х, -у,	1-z. ^{<i>f</i>} x, γ, -1+z.

TableS6. π interaction parameters (Å and °) for compound 1-5

 Table S7. Angles between Py, Pz and Amide planes in compounds 1-5.

 Table S8. Mercury (II) halide (halide= Cl(1-37), Br(38-76), and I(77-100)) coordination compounds containing pyrazine-type organic ligand.

	containe	_{y-} coora.	coordination geometry of Hg	Hg-Npz distance	Hg-Npy distance	Hg-X _{terminal} (X= Cl,Br,I)	Hg-X _{bridging} (X= Cl,Br,I)	Ref.
Compound	< Py a	nd Amide	plane (°) <pz a<="" th=""><th>nd Amide plan</th><th>e(°)</th><th><py and="" p<="" th=""><th>'z (°)</th><th></th></py></th></pz>	nd Amide plan	e(°)	<py and="" p<="" th=""><th>'z (°)</th><th></th></py>	'z (°)	
1 EREQEZ × pz	√ √		fourfold coordination	-	2.590 (5)	2.3464 (16)	-	1
[HgCl ₂ (L)] _n (1)		29.38	geometry square-planar	3.74	2.876 (5)	32.59		
2 BABLOH √pz	√ру ✓		Three-coord.	2.633(8)	2.527(7)	2.315(3)	2.357(2)	2
[HgBr ₂ (L)] _n (2)		29.89	square pyramid	4.30		2.361(2)3.45	2.359(2)	
[!!~! (!)] (?)		7 7 4	octahedral	7.06		14.31		
3 BABLUN [[[]]]2([]])n (3)	√ру ✓	7.24	octahedral	2.649	2.285	2.325(3) ^{4.21}	3.149(2)	2
[ZnCl ₂ (L) ₂] (4)		19.96(n	1)	4.81(n3n4)		17.56(n1n	3130(3) 3114) 2.362(2)	
		19.47(n	5)	8.21(n7n8)		25.58(n5n	771876(2)	
4 CEKHUX √pz	x x	- (óctahedral	2.812(5)	-	2.304(2)	- ''	3
5 CEKJOT [Cdl ₂ (1)]3]n (5)	x x	28.07	square-based pyramidal	1.6958 (5)	-	2.315(2)6.79	-	3
			square-planar	2.760(6)		2.316(2)		
			square-planar	2.723(6)		2.319(2)		
				2.713(5)		2.312(2)		
6 CIDLOS √pz	x x		octahedral	2.644(6)	-	-	2.382(2)	4
							3.099(2)	
7 CIDMEJ √pz	x x		square pyramid	2.616(9)	-	2.316(4)	2.336(4)	4
8 CIDMUZ √pz	x x		distorted octahedral	2.657(4)	-	-	2.368(1)	4
							3.012(1)	
9 HIGQUL √pz	x x		distorted octahedral	2.619(2)	-	-	2.377(1)	4
							2.983(1)	
10 CUYDUW ✓pz	x x		octahedral	2.844(4)	-	2.2931(11)	-	5
11 DEBVAJ ×Pz(s)	x x		Five-coordinate	-	-	2,3068(11)	-	6
						2,3107(11)		
12 DEBWEN -	x x		Six-coordinate	-	-	2,3396(10)	-	6
Pz(s)						2,3396(11)		
13 EJOPEZ ✓	x x		trigonal bipyramidal	2.507(7)	-	2.2901(2)	2.3274(1)	7
pz			trigonal bipyramidal	2.7294(1)			3.0603(1)	
				2.568(7)				
				2.7873(1)				

14	EMIGAK	√ n7	×	×	Seesaw	2.532(6)	-	2.298(2)	-	8
15	EMIPAT	√ n7	×	×	Seesaw	2.522(6)	-	2.299(2)	-	8
16	EWIPIK	γ γ	√ру	✓	distorted square pyramid	2.783(10)	2.483(9)	2.343(3)	-	9
17	EWOQUC	μ2 ✓	×	×	octahedral	2.510 (7)	-	-	2.503 (3)	10
18	FECHEC	×pz	√ру	×	tetrahedral	-	-	2.476(2)	-	11
19	GAVBOV	√pz	√ру	✓	five-coordinated	2.610 (4)	2.539 (4)	2.3569 (14)	-	12
20	GURKOU	√pz	×	×	Four -coordinate linear	2.788(4)	2.622 (4)	2.3773 (14) 2.2975(10)	-	13
21	HOTRID			<u></u>	geometry	2 621(6)	2 280(6)	2 264/2)		14
21	Потыс	· pz	QUINOLIN		bipyramid	2.647(6)	2.393(5)	2.348(2) 2.348(2) 2.354(2)	-	14
22	IQIHUM	√pz	×	×	highly distorted tetrahedral	2.463(6)	-	2.324(2)	-	15
23	KABRUC	√pz	×	×	trigonal bipyramidal	2.773(3)	-	2.330(1)	-	16
24	QEZNIU	√pz	×	×	seesaw	2.656(8)	-	2.289(2)	-	17
25	QEZNOA	✓pz	×	×	square-based pyramid	2.575(5)	-	-	2.3464(18) 3.047(2) 2.3375(19) 3.044(2)	17
26	QEZNUG	✓pz	×	×	three coordination seesaw	2.573(2) 2.516(2)	-	2.3106(6) 2.3089(7) 2.3340(7) 2.3088(7)	-	17
27	QEZPAO	✓pz	×	×	three coordination seesaw	2.599(7) 2.551(9)	-	2.294(2) 2.295(2) 2.300(2) 2.325(2)	-	17
28	QIVXAV	✓Quinoxali ne	√ру	\checkmark	Four-coordinate Four-coordinate	2.651 2.831	2.445 2.491	2.317(3) 2.329(2)	2.366(2) 2.367(2)	18
29	QUMVIE	√Pz(s)	×	×	Five- coordinate	2.561(13)	-	-	2.348(4) 2.343(4) 3.08(4) 2.994(5)	19
30	QUVXEM	✓ phenazine	×	×	distorted square pyramidal	2.595(7)	-	-	2.334(1) 2.338(2) 3.059(2) 3.104(2)	20
31	RUSNEZ	√ Pz	×	×	Distorted octahedral	2.661 (7)	-	-	2.970 (2) 2.375 (2)	21
32	SAXDOK	 ✓2- Methylquin oxaline 	×	×	Distorted octahedral	2.61(3)	-	-	2.348(7) 2.326(7) 3.081(7) 3.070(7) 3.328(7)	22
33	TIZNIB	√pz	×	×	seesaw	2.657(7)	-	2.298(2) 2.301(2)	-	23
34	XIVKIW	✓ pz	×	×	three-coordinate	2.548(9)	-	2.302(3) 2.318(3)	-	24
35	XIVKOS	✓pz	×	×	three-coordinate	2.556(8)	-	2.305(3) 2.313(3)	-	24
36	YIZTUW	√quinoxali ne,	√ру	\checkmark	distorted square pyramidal	2.480(4)	2.336(10)	2.387(4)	2.500(4) 2.742(3)	25
37	ZUFHUF	✓ benzo[<i>a</i>]q uinoxalino[2, 3-	×	×	distorted tetrahedral	2.572(5)	-	2.3624(16)	-	26
38	Ινοκιρ	✓ polyphenyl quinoxaline	×	×	deformed tetrahedral	2.585(4) 2.606(4)	×	2.4519(9) 2.4531(10)	×	27
39	BUKYEN	\checkmark	×	×	three-coordinate ,T-shaped	2.526(12)	×	2.4516(14)	x	28

		pz						2.4309(14)		
40	BUKYIR	√ pz	×	×	three-coordinate, T-shaped	2.552(14)	×	2.4208(18) 2.4507(16)	×	28
41	CEKJAF	√ pz	×	×	square-based pyramid	2.447(1)	×	2.455(1)	2.472(2) 3.112(1)	3
42	CEKJIN	√ pz	×	×	three-coordinate	2.538(7)	×	2.413(1) 2.445(1)	*	3
43	CIDLUY	√ pz	×	×	distorted square pyramidal	2.445(16)	×	x	2.475(4) 2.474(4) 3.148(3) 3.191(3)	4
44	CIDMIN	✓ pz	×	×	distorted octahedral	2.734(6)	×	×	2.459(2) 3.280(2)	4
45	CIDNAG	√ pz	×	×	seesaw	×	×	2.418(1) 2.427(1)	×	4
46	CIDNEK	✓ pz	×	×	distorted octahedral	2.695(1)	×	×	2.483(1) 3.181(1)	4
47	COTSAH	✓ phenazine	×	×	distorted tetrahedral	2.477(4) 2.534(4)	×	2.4534(12) 2.4595(15)	×	29
48	CUMXIT	✓ quinoxaline	√ PY	\checkmark	distorted tetrahedral	2.542(7)	2.471(8)	2.4661(12) 2.4702(13)	×	30
49	CUYFEI	✓ pz	×	×	Four-coordinate	2.584(6)	×	2.4244(11) 2.4260(13)	×	5
50	DULWAJ	√ pz	×	×			×	×		31
51	EMIFUD	✓ pz	×	×	seesaw geometry	2.528(6)	×	2.422(1) 2.425(1)	×	8
52	EMINUL	√ pz	×	×	T-shape geometry	2.494(2)	×	2.413(3) 2.450(3)	×	8
53	EWIPEG	✓ pz	√ PY	\checkmark	Distorted tetrahedral	2.496(9)	2.419(11)	2.4713(14) 2.465(13)	×	9
54	EWORAJ	✓ pz	×	×	Deformed octahedral	2.719 (4) 2.844 (4)	×	2.4691 (10) 2.4726 (9)	×	32
55	GURKUA	✓ quinoxaline	×	×	linear geometry	2.802(3)	×	2.4203(4)	×	13
56	HOTBUP	✓ pz	√ quinolin	\checkmark	distorted octahedron trigonal pyramidal	2.756(1)	2.366(7)	2.4247(9) 2.4597(13)	2.5181(11) 3.0667 (12)	14
57	HOTCAW	✓ pz	✓ quinolin	×	distorted octahedron	2.720(9)	×	×	2.4870(12) 3.1150(13)	14
58	IQIJAU	✓ pz	×	×	distorted tetrahedral	2.499(1) 2.571(1)	×	2.266(1) 2.332(1)	×	15
59	MIRPUZ	√ pz	×	×	distorted tetrahedral	2.528 (13)	×	2.4234 (15)	×	33
60	MOWGEL	√ bpyz	×	×	distorted octahedron	2.723	×	×	2.4683(7) 3.194	34
61	OMILED	x phenazine	×	×	tetrahedral	×	×	2.571(2) 2.624(2)	×	35
62	OROJIP	⊁ quinoxaline	×	×	Distorted tetrahedral	×	×	2.5527(14) 2.5175(14)	×	36
63	QEZPES	✓ pz	×	×	seesaw geometry	2.514(7)	×	2.4147(10) 2.4293(0)	×	17
64	QEZPIW	✓ pz	×	×	T-shaped	2.49(3)	×	2.443(4) 2.462(4)	×	17
65	QEZPOC	✓ pz	×	×	T-shaped	2.469(10)	×	2.4639(12) 2.4287(14)	×	17
66	QEZPUI	✓ pz	×	×	T-shaped	2.480(13)	×	2.424(2) 2.459(2)	×	17
67	QEZQAP	✓ pz	×	×	T-shaped	2.449(13)	×	2.420(2) 2.4569(18)	×	17
68	QIVWAU	× quinoxaline	✓ PY	\checkmark	Four-coordinate	×	2.528(5)	2.488(1)	×	18
69	QUMTOI	✓ pz	×	×	distorted octahedral	2.476(10)	×	×	2.6668(14) 2.6669(14) 2.8748(14)	19
70	QUMTUO	√ pz	×	×	distorted octahedron	2.568	×	×	2.4581(19) 2.4546(19) 3.132(2)	19

71	QUMVEA	✓ pz	×	×	distorted square pyramidal	2.508(13)	×	×	2.4800(16) 3.0700(16) 2.4783(16)	19
72	QUVWEL	✓ phenazine	×	×	square pyramidal	2.784(3)	×	×	2.4458(4) 2.4363(4) 3.1108(5) 3.3527(5)	20
73	QUVZUE	✓ phenazine	×	×	square pyramids	2.563(9)	×	×	2.461(1) 2.4634(9) 3.262(1) 3.296(1)	20
74	TIZNOH	√ pz	×	×	seesaw	2.672(8)	×	2.426(1) 2.428(1)	×	23
75	ZATJOT	✓ quinoxaline	√ PY	\checkmark	distorted trigonal bipyramidal	2.489(16	2.366(16)	2.524(2	2.588(2 2.917(2	37
76	HULVOA	× quinoxaline	×	×	distorted tetrahedral	×	×	2.496(3)	2.776(4)	38
77	CEKHOR	√ Pz	×	×	square-based pyramid	2.513(7)	×	2.611(1)	2.632(1) 3.501(1) 3.542(1)	3
78	CEKJET	√ Pz	×	×	Distorted T-shape.	2.561(7)	×	2.586(1) 2.608(1)	×	3
79	CIDLIM	✓ Pz	×	×	distorted T-shape	2.662(9)	×	2.593(1) 2.594(1)	×	4
80	CIDMAF	√ Pz	×	×	pseudo four-coordinate,	2.659(5)	×	2.583(1)	×	4
81	CIDMOF	√ Pz	×	×	pseudo four-coordinate,	2.628(5)	×	2.585(1)	×	4
82	CUYFAE	√ P7	×	×	distorted octahedron	2.498(7)	×	2.6014(9)	×	5
83	EMIFOX	✓ Pz	×	×	T-shape	2.544(8)	×	2.596(1)	×	8
84	EMINOF	√ Pz	×	×	T-shape	2.537(2)	×	2.576(2) 2.604(2)	×	8
85	EWOREN	√ Pz	×	×	Three-coordinate	2.511 (18)	×	2.6036 (19) 2.6278 (19)	×	39
86	EWOREN01	√ Pz	×	×	distorted octahedron	2.507(10)	×	2.6121(9)	2.6388(8) 3.480	19
87	GAHPIR	√ Pz	√ PY	\checkmark	Five-coordinate	2.635	2.547 2.583	2.631 2.669	×	40
88	HIGRAS	√ Pz	×	×	distorted octahedral	2.887(2)	×	×	2.609(1) 3.544(1)	4
89	НОТВОЈ	✓ Pz	✓ quinolin	\checkmark	pseudo-six coordinate octahedral trigonal pyramidal	2.887(11)	2.391(9)	2.642(1) 2.5791(12)	2.7009(8) 3.1182(9)	14
90	HOTCEA	✓ Pz	✓ quinolin	×	T-shape	2.521(1)	×	2.599(1) 2.602(1)	×	14
91	IQIJEY	✓ Pz	×	×	Distorted tetrahedral	2.476	×	2.607(1)	2.614(1) 3.501(1)	15
92	IWEVIP	× Pz	✓ PY	\checkmark	tetrahedral	×	2.443(4) 2.480(5)	2.6479(5) 2.6474(5)	×	41(59)
93	LAMVEC	✓ Pz	×	×	distorted tetrahedral	2.497 (11)	×	2.6373 (13)	×	42
94	QAMXIL	× Pz	×	×	Distorted tetrahedral	×	×	2.603(2) 2.633(2)	×	43
95	QEZQET	✓ Pz	×	×	seesaw	2.54(3)	×	2.602(2)	2.622(2) 3.512(3)d	17
96	QEZQIX	Pz	×	×	square-based pyramid	2.474(10)	×	2.5950(11)	2.6381(10) 3.4957(5)	17
97		Pz	×	×	square-based pyramid	2.484(<i>1</i>)	228 5/22\	25953(8)	2.0394(8) 3.5182(4)	1/
38		▲ quinoxaline	PY	• 		⊼	238,5(22)	264,9(3) 264,9(3)	×	72
99		✓ Pz	×	×	pseudo-square planar	2.94(1)	×	2.5/6(1)	x	23
100	ZOGWIB	✓ quinoxaline	✓ PY	V	distorted square pyramid	2.541(18)	2.399(18)	2.6/1(2)	2.690(2) 3.416(1)	44

Figure S1. ORTEP diagram of compound **1**, showing coordination geometry. Ellipsoids are drawn at 50% probability level. Symmetry codes: i: 1+x, y, z, ii=-1+x, y, z.

Figure S2. ORTEP diagram of compound **2**, showing coordination geometry. Ellipsoids are drawn at 50% probability level. Symmetry codes: i: 1+x, y, z, ii=-1+x, y, z.

Figure S3. ORTEP diagram of compound **3**, showing coordination geometry. Ellipsoids are drawn at 50% probability level. Symmetry code: i= 2-x, -1/2+y, 1.5-z.

Figure S4. ORTEP diagram of compound 4, showing coordination geometry. Ellipsoids are drawn at 50% probability level.

Figure S5. ORTEP diagram of compound **5**, showing coordination geometry. Thermal ellipsoids are drawn at 50% probability level. Symmetry codes: i: 2-x, -y, z, ii: x, y, 1+ z, iii: 2-x, -y, 1+z.

Figure S7. Histogram plot for Hg-Br distance from a CSD search.

Figure S8. Electrostatic surface potentials (ESP) for ligand.

Figure S9. Hirshfeld surface mapped with d_{norm} for compound 1(top) and for compound 2 (bottom), showing C-H...O, C-H...N, N-H...N (left) and C-H...Cl (right) hydrogen bonds.

Figure S10. Hirshfeld surfaces mapped with shape index (red and blue triangles has been shown by black circle), curvedness and decomposed finger print plots to C-C contacts showing relative contribution of $\pi \bullet \bullet \bullet \pi$ stacking interactions for compound **1**(a), **2**(b), (left to right)

Figure S11. (a) Hirshfeld surface mapped with *d*_{norm}, showing C-H...O (left) and C-H...I (right) hydrogen bonds (b) Hirshfeld surface mapped with shape index (left) and curvedness (right) for compound 3.

Figure S12. Hirshfeld surface mapped with *d*_{norm}, showing (a) C19-H19...O1 and N2-H2N...Cl1, (b) C10H10...O2, C18H18...N7 (c) N6H6N...Cl1, C20H20...N4, C19H19...O1 hydrogen bonds for compound 4.

Figure S13. Hirshfeld surface mapped with (a) *d*_{norm}, showing C-H...O, C-H...N, N-H...N hydrogen bonds (b) shape index (c) curvedness and (d) decomposed finger print plots to C-C contacts for compound **5**.

Figure 14. View of the best-fit profile of the Rietveld refinement of compound 6

Figure S15. View of the best-fit profile of the Rietveld refinement of compound 9

Fig. S16 IR Spectrum of ligand

Fig. S17 IR Spectrum of compound 1

Fig. S18 IR Spectrum of compound 2

Fig. S19 IR Spectrum of compound 3

Fig. S20 IR Spectrum of compound 4

Fig. S21 IR Spectrum of compound 5

Fig. S22 IR Spectrum of compound 6

Fig. S23 IR Spectrum of compound 7

Fig. S24 IR Spectrum of compound 8

Fig. S25 IR Spectrum of compound 9

Fig. S26 IR Spectrum of compound 10

Fig. S27 IR Spectrum of compound 11

Fig. S28 IR Spectrum of compound 12

References

- 1- M. Alfonso and H. Stoeckli-Evans, ActaCryst., 2016, E72, 1214–1218.
- 2- H. R. Khavasi and B. Mir Mohammad Sadegh, Inorg. Chem., 2010, 49, 5356–5358.
- 3- H. R. Khavasi, M. M. Barforoush and M. A. Fard, CrystEngComm., 2012, 14, 7236-724.
- 4- H. R. Khavasi and A. A. Tahrani, *CrystEngComm*, 2013, **15**, 5799-5812.
- 5- H. R. Khavasi and M. Azizpoor Fard, Cryst. Growth Des., 2010, 10, 1892-1896.

6- H-J. Holdt, H. Muller, A. Kelling, H-J. Drexler, T. Muller, T.S chwarze, U. Schilde and I. Starke, *Z.Anorg.Allg.Chem.*, 2006, 632, 114-122.

7- E-C. Yang, Y. Feng, Z-Y. Liu, T-Y. Liu and X-J. Zhao, CrystEngComm., 2011, 13, 230-242.

8- H. R. Khavasi and S. Kavand , CrystEngComm., 2016, 18, 4760-4764.

9- B. Notash, N. Safari, and H. R. Khavasi, Inorg. Chem. 2010, 49, 11415-11420.

10- P. Nockemann and G. Meyer, Acta Cryst., 2004. E60, m744-m746.

11- Y-W. Li, Y. Tao, L-F. Wang, T-L. Hu and X-H. Bu, *RSC Adv.*, 2012, 2, 4348-4352.

12- L. Zhang, X-H. Zhao and Y. Zhao, Acta Cryst., 2005, E61, m1760–m1761.

13- C-W. Yeh, U. Ray and J-D. Chen, J.Chin.Chem.Soc., (Taipei) 2009, 56, 1216-1224.

14- H. R. Khavasi and B. Mir Mohammad Sadegh, Dalton Trans., 2015, 44, 5488-5502.

15- H. R. Khavasi, A. R. Salimi, H. Eshtiagh-Hosseini and M. M. Amini, CrystEngComm., 2011, 13, 3710-

16-Y. Qiu, B. Liu, G. Peng, J. Cai, H. Deng and M. Zeller, *Inorg. Chem. Commun.*, 2010, 13, 749–752.

17- H. Khavasi and A. Azhdari Tehrani, Inorg. Chem., 2013, 52, 2891–2905.

18- M. Nolte, I. Pantenburg and G. Meyer, Z.Anorg.Allg.Chem. (2008), 634, 362-368.

19- G. Mahmoudi and A. Morsali, CrystEngComm (2009), 11, 1868 1868-1879.

20- C. Slabbert and M. Rademeyer, CrystEngComm., 2015, 17, 9070-9096.

21- A. Azhdari Tehrani, B. Mir Mohammad Sadegh and H. R. Khavasi, *Acta Crystallogr., Sect.E:Struct.Rep.Online.*, 2010, **66**, m261-

22- J. R. Allan, A. D. Paton, A. J. Blake and K. Turvey, Acta Crystallogr., Sect. C:Cryst. Struct. Commun., 1989, 45, 1422-1424.

23- H. R. Khavasi and B. M. M. Sadegh, Dalton Trans., 2014, 43, 5564-5573.

24- Y-B. Dong, M. D. Smith and H-C zur Loye, Solid State Sciences., 2000, 2, 861–870.

25- S. Kasselouri, A. Garoufis, S. Paschalidou, S. P. Perlepes, I. S. Butler and N. Hadjiliadis, *Inorg.Chim.Acta.*, 1994, 227, 129-136.

(2015), 190, 360

26- A. Dadrass, H. Rahchamani, J. Khalafy, A. Ramazani, B. P. Habashi, A. P. Marjani, A. Souldozi, K. Slepokura, T. Lis and M. Rouhani, *Sulfur, Silicon, Relat.Elem.*, 2015, 190, 360-371.

27- Q. Zhao, Z. Shen, H. Yang, Q. Zhou and Q-H. Wang, *Jiegou Huaxue.*, 2016, 35, 1253-1259.

28- H. R. Khavasi, F. Norouzi and A. A. Tehrani, *Cryst.Growth Des.*, 2015, 15, 2579-2583.

29- A. P. Marjani, B. P. Habashi, H. Rahchamani, J. Khalafy, A. Dadrass and H. Y. Asl, *Jiegou Huaxue.*, 2014, **33**, 1460

30- Q. Zhao, Z. Shen, H. Yang and H-Z. Song, Jiegou Huaxue., 2016, 35, 69-76.

31- B. Mir Mohammad Sadegh, A. Azhdari Tehrani and H. R. Khavasi, *Acta Crystallogr., Sect.E:Struct.Rep.Online.,* 2010, **66**, m158.

32- P. Nockemann and G. Meyer, Acta Crystallogr., Sect.E:Struct.Rep.Online., 2004, 60, m747-m748.

33- G-W. Wang, W-Y. Wu, L-H. Zhuang and J-T. Wang, *Acta Crystallogr.,Sect.E:Struct.Rep.Online.,* 2008, **64**, m13.

34- J-Y. Wu, H-Y. Hsu, C-C. Chan, Y-S. Wen, C. Tsai and K-L. Lu, Cryst. Growth Des. 2009, 9, 258-262.

35- C. Slabbert and M. Rademeyer, *CrystEngComm.*, 2016, **18**, 4555-4579.

36- J-L. Du, Z-Z. Wei and T-L. Hu, Solid State Sciences., 2011, 13, 1256-1260.

37- S. P. Perlepes, S. Kasselouri, A. Garoufis, F. Lutz, R. Bau, and N.Hadjiliadis, Polyhedron. 1995, 14, 1461-1470.

38- F. Yu, W. Zhang, P. Li, Y. Xing, L. Tong, J. Ma and B.Tang, *The Analyst.*, 2009, **134**,1826-1833.

39- P. Nockemann and G. Meyer, Acta Crystallogr., Sect. E: Struct. Rep. Online., 2004, E 60, m749-m750.

40- L. Saghatforoush, Jiegou Huaxue., 2015, 34, 1869- 1875.

41- O. Vallat, A. Neels and H. Stoeckli-Evans, J. Chem. Cryst., 2003, 33, 39-50.

42-S. A. Shirvan, M. R. Asghariganjeh, M. Aghajeri, S. Haydari Dezfuli and F. Hossini, *Acta Crystallogr., Sect. E: Struct. Rep. Online.*, 2012, 68, m303-m309.

43- Y-B. Dong, M. D. Smith and H-C.zur Loye, Angew.Chem., Int.Ed., 2000, 39, 4271-4273.

44- A. Garoufis, S. P. Perlepes, A. Schreiber, R. Bau and N. Hadjiliadis, Polyhedron., 1996, 15, 177-182.