Five compounds based on $\left[\mathrm{TeMo}_{6} \mathrm{O}_{24}\right]^{6-}$ and $\left[\beta-\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ anions by using different symmetrical and asymmetric N donor ligands

Jun Ying, * Chenxi Sun, Liang Jin, Aixiang Tian, Xiuli Wang*
Table S1. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of compounds $\mathbf{1 - 5}$.

Compound 1

$\mathrm{Cu}(1)-\mathrm{N}(2)$	$1.982(3)$	$\mathrm{Cu}(1)-\mathrm{N}(4) \# 3$	$1.997(3)$
$\mathrm{Cu}(1)-\mathrm{O}(6)$	$2.403(3)$	$\mathrm{Cu}(1)-\mathrm{O}(13)$	$1.903(2)$
$\mathrm{Cu}(2)-\mathrm{N}(1) \# 2$	$2.047(3)$	$\mathrm{Cu}(2)-\mathrm{O}(13)$	$1.909(2)$
$\mathrm{O}(13)-\mathrm{Cu}(1)-\mathrm{O}(6)$	$95.53(11)$	$\mathrm{O}(13)-\mathrm{Cu}(1)-\mathrm{N}(2)$	$88.48(11)$
$\mathrm{O}(13)-\mathrm{Cu}(1)-\mathrm{N}(4) \# 3$	$93.65(11)$	$\mathrm{O}(4)-\mathrm{Cu}(1)-\mathrm{O}(6)$	$88.55(9)$
$\mathrm{O}(4)-\mathrm{Cu}(1)-\mathrm{N}(4) \# 3$	$89.46(11)$	$\mathrm{N}(2)-\mathrm{Cu}(1)-\mathrm{N}(4) \# 3$	$175.30(12)$
$\mathrm{N}(2)-\mathrm{Cu}(1)-\mathrm{O}(6)$	$89.58(11)$	$\mathrm{O}(13)-\mathrm{Cu}(2)-\mathrm{N}(1)$	$87.37(10)$

Symmetry codes for 1: \#1 1-X, 1-Y, 1-Z; \#2 -X, 1-Y, 1-Z; \#3 +X, 1-Y, -1/2+Z

Compound 2

$\mathrm{Cu}(1)-\mathrm{O}(12)$	$1.970(2)$	$\mathrm{Cu}(1)-\mathrm{N}(3)$	$2.032(3)$
$\mathrm{Cu}(1)-\mathrm{N}(2)$	$1.995(3)$	$\mathrm{Cu}(1)-\mathrm{N}(1)$	$2.000(3)$
$\mathrm{O}(12)-\mathrm{Cu}(1)-\mathrm{N}(3)$	$174.58(11)$	$\mathrm{O}(12)-\mathrm{Cu}(1)-\mathrm{N}(1)$	$94.48(11)$
$\mathrm{O}(12)-\mathrm{Cu}(1)-\mathrm{N}(2)$	$93.67(11)$	$\mathrm{N}(2)-\mathrm{Cu}(1)-\mathrm{N}(3)$	$85.76(11)$
$\mathrm{N}(2)-\mathrm{Cu}(1)-\mathrm{N}(1)$	$168.41(13)$	$\mathrm{N}(1)-\mathrm{Cu}(1)-\mathrm{N}(3)$	$85.35(12)$

Symmetry codes for 2: \#1 1-X,1-Y,1-Z

Compound 3

$\mathrm{Cu}(1)-\mathrm{N}(1) \# 2$	$1.968(6)$	$\mathrm{Cu}(1)-\mathrm{N}(3) \# 3$	$2.027(7)$
$\mathrm{Cu}(1)-\mathrm{N}(2)$	$1.978(7)$	$\mathrm{N}(1)-\mathrm{C}(2)$	$1.331(9)$
$\mathrm{N}(1) \# 2-\mathrm{Cu}(1)-\mathrm{N}(3) \# 3$	$118.9(3)$	$\mathrm{N}(1) \# 2-\mathrm{Cu}(1)-\mathrm{N}(2)$	$129.7(3)$
$\mathrm{N}(2)-\mathrm{Cu}(1)-\mathrm{N}(3) \# 3$	$108.9(3)$	$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{Cu}(1) \# 4$	$120.7(6)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{Cu}(1) \# 4$	$119.8(5)$	$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(1)$	$117.2(6)$

Symmetry codes for 3: \#1 5/2-X, 1/2-Y; \#2 +X, 1-Y, -1/2+Z; \#3 2-X, +Y, 1/2-Z

$\mathrm{Cu}(1)-\mathrm{O} 1 \mathrm{~W}$	$1.949(4)$	$\mathrm{Cu}(1)-\mathrm{O} 2 \mathrm{~W}$	$1.986(4)$
$\mathrm{Cu}(1)-\mathrm{N}(4) \# 2$	$1.944(4)$	$\mathrm{Cu}(1)-\mathrm{N}(1)$	$1.958(4)$
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Cu}(1)-\mathrm{O} 2 \mathrm{~W}$	$164.36(17)$	$\mathrm{O} 1 \mathrm{~W}-\mathrm{Cu}(1)-\mathrm{N}(1)$	$89.82(16)$
$\mathrm{N}(4) \# 2-\mathrm{Cu}(1)-\mathrm{O} 2 \mathrm{~W}$	$91.82(16)$	$\mathrm{N}(4) \# 2-\mathrm{Cu}(1)-\mathrm{O} 1 \mathrm{~W}$	$88.92(16)$
$\mathrm{N}(4) \# 2-\mathrm{Cu}(1)-\mathrm{N}(1)$	$173.55(18)$	$\mathrm{N}(1)-\mathrm{Cu}(1)-\mathrm{O} 2 \mathrm{~W}$	$91.10(16)$

Symmetry codes for 4: \#1 2-X,1-Y,1-Z; \#2 +X,+Y,1+Z

Compound 5

$\mathrm{Cu}(1)-\mathrm{O}(25)$	$1.929(4)$	$\mathrm{Cu}(1)-\mathrm{O}(12)$	$2.201(4)$
$\mathrm{Cu}(1)-\mathrm{N}(1) \# 4$	$1.990(5)$	$\mathrm{Cu}(1)-\mathrm{N}(2)$	$2.078(5)$
$\mathrm{Cu}(3)-\mathrm{O}(22) \# 5$	$1.968(4)$	$\mathrm{Cu}(3)-\mathrm{O}(15) \# 6$	$2.303(4)$
$\mathrm{Cu}(2)-\mathrm{O}(25)$	$1.927(4)$	$\mathrm{Cu}(2)-\mathrm{N}(3)$	$1.966(4)$
$\mathrm{O}(9) \# 3-\mathrm{Cu}(1)-\mathrm{O}(12)$	$98.54(16)$	$\mathrm{O}(9) \# 3-\mathrm{Cu}(1)-\mathrm{N}(1) \# 4$	$87.86(17)$
$\mathrm{O}(25)-\mathrm{Cu}(1)-\mathrm{O}(12)$	$97.23(17)$	$\mathrm{N}(1) \# 4-\mathrm{Cu}(1)-\mathrm{O}(12)$	$93.39(18)$
$\mathrm{O}(22)-\mathrm{Cu}(3)-\mathrm{O} 3 \mathrm{~W}$	$90.19(17)$	$\mathrm{O}(22)-\mathrm{Cu}(3)-\mathrm{O}(15) \# 6$	$90.83(15)$
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Cu}(2)-\mathrm{N}(3)$	$174.72(19)$	$\mathrm{O}(25)-\mathrm{Cu}(2)-\mathrm{O} 1 \mathrm{~W}$	$90.86(17)$

Symmetry codes for 5: \#1 2-X, 1-Y, 1-Z; \#2 1-X, 1-Y, 2-Z; \#3 1-X, 1-Y, 1-Z; \#4 1-X, 2-Y, 1-Z; \#5 2-X, 1-Y, 2-Z; \#6 1+X, +Y, +Z

Fig. S1. The 1D chain of $\mathbf{1}$ with tri-nuclear Cu clusters linked by Anderson anions.

Fig. S2. The 1D chain of $\mathbf{2}$ with $[\mathrm{Cu}(\text { talm })]^{2+}$ subunits linked by Anderson anions.

Fig. S3. The 2D topological structure connected by hydrogen bonds of compound 2 and the topology along $a b$ plane. $\beta-\mathrm{Mo}_{8}$ (purple), Ptep ligand (blue), Cu (yellow), O (red).

Fig. S4. The 2D sheet structure of $\mathbf{5}$.

Fig. S5. The IR spectra of compounds $\mathbf{1 - 5}$.

Fig. S6. The solid-state optical diffuse-reflectance spectra of compounds 1-5.

Fig. S7. The dependence of anodic peak and cathodic peak currents of $1-\mathrm{CPE}$ on scan rates.

Fig. S8. The dependence of anodic peak and cathodic peak currents of 3-CPE on scan
rates.

Fig. S9. Cyclic voltammograms of the 3-CPE in $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}+0.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ aqueous solution containing $0-8 \mathrm{mM} \mathrm{Cr}(\mathrm{VI})$. Scan rate: $200 \mathrm{mV} \cdot \mathrm{s}^{-1}$.

Fig. S10. The absorption spectra of GV solution during the decomposition reaction under UV irradiation with compounds $\mathbf{1 - 5}$ as the catalyst.

Fig. S11. The absorption spectra of RhB solution during the decomposition reaction under UV irradiation with compounds $\mathbf{1 - 5}$ as the catalyst.

Fig. S12. Four cycles of photocatalytic degradation of compounds 1-5.

Fig. S13. The PXRD spectra of compounds 1-5.
(a)

(b)

(c)

Fig. S14. Under UV irradiation, the absorption spectrum of MB solution after adding $\left(\mathrm{NH}_{4}\right)_{6}\left[\mathrm{TeMo}_{6} \mathrm{O}_{24}\right] \cdot 7 \mathrm{H}_{2} \mathrm{O}(\mathrm{a})$, metal organic unit(b), and compound $\mathbf{1}(\mathrm{c})$.

Fig. S15. The absorption spectra of the MO solution with the compounds $\mathbf{1 - 5}$ as the catalyst.

Fig. S16. UV spectra of the $\mathrm{Cr}(\mathrm{VI})$ solution without compounds used as the photoreduction catalysts.

Fig. S17. Comparative experiment of compound 3 catalytic reduction $\operatorname{Cr}(\mathrm{VI})$: no formic acid was added in the first 20 minutes, and formic acid was added after 20 minutes.

Fig. S18. Four cycles of photocatalytic reduction of compounds 3 and 4.

