Electronic Supplementary Information

A {Na₂Fe₁₀} isobutyrate cluster, interlinked into 1D chains

Daniel Podgornii,^a Jan van Leusen,^b Victor Ch. Kravtsov,^a Paul Kögerler^{*b} and Svetlana G. Baca^{*a}

^aInstitute of Applied Physics, 2028 Chisinau, R. Moldova.

^bInstitute of Inorganic Chemistry, RWTH Aachen University, 52074 Aachen, Germany.

Experimental part

Materials and methods. All reactions were performed under aerobic conditions using chemicals and solvents that were used as received without further purification. The precursor compound $[Fe_3O(ib)_6(H_2O)_3]NO_3 \cdot 2H_2O$ was prepared using a published procedure (O. Botezat, J. van Leusen, V. Ch. Kravtsov, A. Ellern, P. Kögerler and S. G. Baca, *Dalton Trans.*, 2015, **44**, 20753). *Caution! Care should be taken when using the potentially explosive sodium azide.* A WiseClean ultrasonic bath, operating at 42 kHz with maximum power of 120 W was used for ultrasonic irradiation. FTIR spectrum (4000 – 700 cm⁻¹) was recorded on a FTIR PerkinElmer spectrometer. Thermogravimetric analysis/differential thermal analysis (TGA/DTA) measurements were performed with AUTOSORB 1 in nitrogen atmosphere at a heating rate 10 K \cdot min⁻¹ from 20 – 1000 °C.

Magnetic properties were determined using a Quantum Design MPMS–5XL SQUID magnetometer. A microcrystalline sample of **1** was compacted and immobilized into a cylindrical PTFE sample holder. The data were recorded at 0.1 Tesla in the temperature range 2.0 – 290 K, and at 2.0 K in the field range 0.1 – 5.0 Tesla. They were corrected for the diamagnetic contributions of the sample holder and the intrinsic contribution of the compound $(\chi_{m,dia} = -1.16 \times 10^{-3} \text{ cm}^3 \text{ mol}^{-1}).$

Synthesis of $[Na_2Fe_{10}O_6(OH)_4(ib)_{14}(bpy)(MeO)_2(MeCN)_2] \Box MeOH$ (1). A solution of $[Fe_3O(ib)_6(H_2O)_3]NO_3 \cdot 2H_2O$ (0.087 g, 0.1 mmol), pyrazole (0.013 g, 0.19 mmol), 4,4'-bipyridine (0.015 g, 0.1 mmol) and NaN₃ (0.02 g; 0.3 mmol) in 10 mL of MeCN was ultrasonicated for 70 min at 60 °C and then filtered. The filtrate was allowed to slowly evaporate at room temperature. After 2 weeks brown crystals of 1 were filtered off, washed with water and isopropanol and dried in air. Yield: 0.051 g (23% based on Fe). Characteristic IR bands (cm⁻¹): v(OH): 3676 (m); v(C-H): 2971 (s, br), 2902 (sh); v(COO): 1585 (vs), 1422 (vs); δ (C-H): 1470 (m), 1376 (m).

Single-crystal X-ray diffraction crystallographic analysis. Single-crystal X-ray diffraction experiment for 1 was performed at 293 K on an Oxford Xcalibur CCD diffractometer with graphite-monochromatized Mo K α radiation. Full crystallographic data and refinement details of 1 are provided in Table S1. The position of metal atoms was located by direct methods. The remaining atoms were found in an alternating series of least-square cycles and difference Fourier maps. All non-hydrogen atoms were refined in full-matrix anisotropic approximation using the SHELX software package. All hydrogen atoms were placed at idealized position and were allowed to ride on the neighboring atoms. Selected bond distances and angles for 1 are listed in Table S2. CCDC 2088628.

$[Na_{2}Fe_{10}O_{6}(OH)_{4}(ib)_{14}(bpy)(MeO)_{2}(MeCN)_{2}] \Box MeOH$				
Empirical formula	$C_{73}H_{126}Fe_{10}N_4Na_2O_{41}$			
M_r / g mol ⁻¹	2320,21			
Wavelength / Å	0.71073			
Radiation type	MoK _a			
T / K	293			
Crystal system	Monoclinic			
Space group	C2/c			
Unit cell dimensions				
<i>a /</i> Å	25.2017(13)			
b / Å	18.1205(12)			
<i>c</i> / Å	24.0709(10)			
α	90°			
β	105.576(5)°			
γ	90°			
V/Å ³	10588.7(10)			
Ζ	4			
$ ho$ / mg m $^{-3}$	1.455			
μ / mm $^{-1}$	1.415			
Theta range for data collection	3.062° to 25.049°			
Index ranges	$-29 \le h \le 30, -12 \le k \le 21, -22 \le l \le 28$			
Reflections collected	18859			
Independent reflections	9353 [R(int) = 0.0806]			
Reflections $I \ge 2\sigma(I)$	4589			
Data / restraints / parameters	9353 / 85 / 635			
Goodness-of-fit on F^2	0.990			
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0748, wR_2 = 0.1261$			
<i>R</i> indices (all data)	$R_1 = 0.1622, wR_2 = 0.1537$			
Largest diff. peak and hole / $e {\mbox{\AA}^{-3}}$	0.555 and -0.476			

Table S1. Crystal data and details of structural determination for compound 1

Atom 1	Atom 2	Length / Å	Atom 1	Atom 2	Length / Å
Fe1	01	1.891(4)	Fe4	O10	2.001(5)
Fe1	O2	1.899(5)	Fe4	O51	2.054(4)
Fe1	O3	1.931(4)	Fe4	O19 ¹	2.071(5)
Fe1	O6	2.210(5)	Fe4	O4	2.112(5)
Fe1	08	2.214(5)	Fe5	O2	1.906(4)
Fe1	N1	2.249(5)	Fe5	09	1.974(5)
Fe1	Na1 ¹	3.211(3)	Fe5	O12	2.010(5)
Fe2	O31	1.947(4)	Fe5	O18	2.045(5)
Fe2	O20	1.971(4)	Fe5	O41	2.053(4)
Fe2	01	1.989(4)	Fe5	O5	2.119(4)
Fe2	O4	2.050(4)	Na1	O16	2.383(6)
Fe2	O14	2.062(5)	Na1	O14	2.399(6)
Fe2	011	2.108(5)	Na1	O 8 ¹	2.409(5)
Fe2	Fe3	2.9300(14)	Na1	N2	2.417(9)
Fe2	Na1	3.337(3)	Na1	O61	2.444(6)
Fe3	O31	1.939(4)	Na1	O3 ¹	2.460(5)
Fe3	O20	1.970(4)	Na1	Fe1 ¹	3.211(3)
Fe3	O2	1.975(4)	03	Fe3 ¹	1.939(4)
Fe3	O16	2.041(5)	O3	Fe2 ¹	1.947(4)
Fe3	05	2.042(4)	O3	Na1 ¹	2.460(5)
Fe3	013	2.103(5)	O4	Fe5 ¹	2.053(4)
Fe3	Na1	3,340(3)	05	Fe4 ¹	2.054(4)
Fe4	01	1.905(4)	O19	Fe4 ¹	2.071(5)
Fe4	O7	1.980(5)			

Table S2. Selected bond distances for 1

 $1 \frac{1}{2} - x, \frac{3}{2} - y, 1 - z$

Atom	BVS	Atom	BVS
Fe1	2.91	09	-1.95
Fe2	2.99	O10	-1.94
Fe3	3.06	011	-1.95
Fe4	3.01	012	-1.99
Fe5	3.03	013	-1.92
01	-1.87	014	-1.96
02	-1.87	015	-1.58
03	-1.93	016	-1.96
04	-1.37	017	-1.56
05	-1.37	018	-1.97
06	-1.95	019	-1.88
07	-1.94	O20	-2.09
08	-1.93		

Table S3. Bond valence sums for selected atoms in 1 (K. Knížek, *Kalvados – Software for crystal structure and powder diffraction*; see http://www.fzu.cz/~knizek/kalvados/index.html)

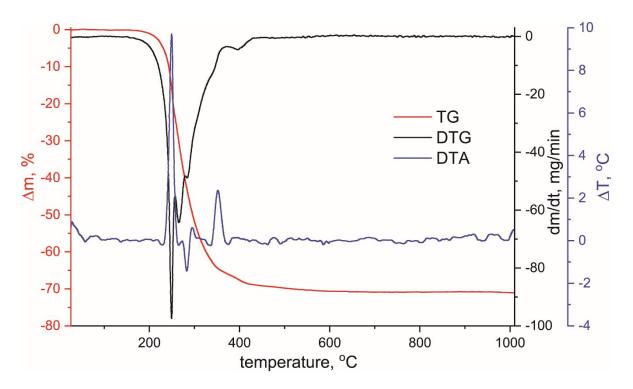


Figure S1. TGA/DTG/DTA curves of 1.