Supporting Information

# Unraveling the growth mechanism of W<sub>18</sub>O<sub>49</sub> nanowires on W surfaces

Suresh Bandi, Ajeet K. Srivastav\*

Department of Metallurgical & Materials Engineering, Visvesvaraya National Institute of Technology, Nagpur-440010.

Corresponding author: srivastav.ajeet.kumar@gmail.com

### S.1: Experimental setup



**Figure S1.** The schematic representation of the experimental setup for the heat treatment performed in the current work.

## S.2: Characterization of precursor W



**Figure S2. a)** XRD profile of the precursor W powder and b) its SEM micrograph revealing irregular particle nature.

## S.3: Appearance of the W powder obtained after thermal treatments



**Figure S3.** The appearance of final products after thermal treatments. a) W heat-treated at 650 °C/1h in  $H_2O(v)$  atmosphere showing the bluish brown color. b) the sample heat-treated at 800 °C/1h showing lucent blue color.



S.4: Results of the intermediate thermal treatment at 450°C/1h

**Figure S4.** a) XRD and b) SEM micrographs of the W thermally treated at  $450^{\circ}$ C/1h under Ar+H<sub>2</sub>O( $\nu$ ) atmosphere.

#### S.5: Dimensions of W<sub>18</sub>O<sub>49</sub> NWs

The diameters and the lengths of the NWs are measured from the FESEM micrographs using ImageJ software (Ver  $1.8.0_{172}$ ). The statistics of the diameters obtained were varied from ~30 nm to ~400 nm. However, the NWs with a diameter <50 nm were not well resolved in the microscopy. The microscopic data is mostly dominated by the NWs with >150 nm. The average diameter of the NWs from the obtained data is calculated as  $140\pm90$  nm, as shown in **Figure S5**. Whereas the average length of the well resolved NWs was measured to be  $6.5\pm1.5$  µm. These statistics are compared with the other results from the literature where the thermal annealing routs were used for the synthesis.



**Figure S5.** The size distributions of a) diameter and b) lengths of  $W_{18}O_{49}$  NWs. The statistics were obtained from FESEM micrographs.

An attempt has been made to compare the product obtained in the current work with the same material reported in the literature. In this view, the details of the  $W_{18}O_{49}$  1d nanostructures synthesized via thermal annealing routes are collected. A comparison table consisting of precursor, temperature, furnace conditions, i.e., atmosphere, time, resultant phase, morphology, growth, and their dimensions, is made as shown in **Table S.1**.

| Precursor                                           | Temp<br>°C     | Atmosphere                                      | Time              | Resultant phase & morphology              | esultant phase & Growth<br>morphology mechanism |           | Dia                      | Length             | Ref. |
|-----------------------------------------------------|----------------|-------------------------------------------------|-------------------|-------------------------------------------|-------------------------------------------------|-----------|--------------------------|--------------------|------|
| W                                                   | 800            | $H_2O(v)$                                       | 1 h               | W <sub>18</sub> O <sub>49</sub> NWs       | SS $(H_2O(v) \text{ reaction})$                 | Very high | 30-400nm<br>140 nm (avg) | 6.5 µm             | C.W. |
| W                                                   | 650            | $H_2O(v)$                                       | 1 h               | W <sub>18</sub> O <sub>49</sub> NWs       | - induced)                                      | Less      | -                        | -                  | C.W. |
| W tip                                               | 700            | Ar (O <sub>2</sub> leakage)                     | 10 min            | W <sub>18</sub> O <sub>49</sub> NWs       | VS (expected)                                   | Less      | 10-30 nm                 | 300 nm             | 1    |
| W plate                                             | 700            | Ar (O <sub>2</sub> leakage)                     | 1 & 3 h           | W <sub>18</sub> O <sub>49</sub> NWs       | VS (expected)                                   | Very less | -                        | 500 nm &<br>1.6 μm | 1    |
| W powder (0.6 - 1 µm)                               | 800            |                                                 | 20,40 &120<br>min | W <sub>18</sub> O <sub>49</sub> NNs       |                                                 | Very high | 20-400 nm                | 10-20 μm           | 2    |
| 100 mesh W powder                                   | 800            | -                                               | 40 min            | W <sub>18</sub> O <sub>49</sub> NNs/NRs   | H <sub>2</sub> O(v) reaction<br>induced         | Moderate  | 0.5-1 μm                 | 10-20 μm           | 2    |
| 100 mesh W powder                                   | 1000           | $\operatorname{Ar+H_2O}(v)$                     | 1 h               | W18O49 MBs                                |                                                 | High      | -                        | ~ 1mm              | 2    |
| W foil (0.5mm thick)                                | 800            | -                                               | 40 min            | W <sub>18</sub> O <sub>49</sub> NNs       | _                                               | High      | -                        | -                  | 2    |
| W wire (0.25 mm dia)                                | 800            | -                                               | 40 min            | W <sub>18</sub> O <sub>49</sub> NN bushes |                                                 | High      | -                        |                    | 2    |
| W powders                                           | 1400 &<br>1300 | Vacuum ~7.7 Pa,<br>and Ar                       | 0.5 h             | W <sub>18</sub> O <sub>49</sub> NTs       | VS (expected)                                   | High      | -                        | ~35 µm             | 3    |
| Array of tungsten<br>filaments (0.2 mm<br>diameter) | 1150           | 0.6 Torrr & Ar<br>(O <sub>2</sub> leakage also) | 0.5 h             | W <sub>18</sub> O <sub>49</sub> NWs       | VS                                              | High      | 100 nm                   | 500 μm             | 4    |
|                                                     | 1200           |                                                 | 0.5 h             | W <sub>18</sub> O <sub>49</sub> NBs       | VS                                              | High      | 200 nm, (30<br>nm each)  |                    | 4    |
| W powder                                            | 650            | 20 Torr                                         | 2 h               | W <sub>18</sub> O <sub>49</sub> NWs       | VS                                              | Less      | 10-50 nm                 | 0.5 – 1.5<br>μm    | 5    |
| W powder (0.2 µm)                                   | 600            | $Ar + H_2O(v)$                                  | 0.5 h             | W <sub>18</sub> O <sub>49</sub> NWs       | H <sub>2</sub> O(v) reaction<br>induced         | Moderate  | 20-50 nm                 | Several<br>µm      | 6    |
| WO <sub>3</sub> powder                              | 900 to<br>1000 | 5-7 mTorr, and ~0.13 sccm air                   | 3 h               | W <sub>18</sub> O <sub>49</sub> NWs       | VS                                              | High      | 10-20 nm                 | Few µm             | 7    |
| Sputtered tungsten film                             | 800            | 0.04-0.05 Pa, and<br>1-1.5 sccm O <sub>2</sub>  | 0                 | W <sub>18</sub> O <sub>49</sub> NWs       | Solid phase                                     | Less      | -                        | -                  | 8    |
| W filament                                          |                | 0.8 Torr, and 200<br>sccm Ar                    | 0.5 h             | W <sub>18</sub> O <sub>49</sub> NWs       | VS                                              | High      | Several nm               | Several<br>µm      | 4,9  |
| WO <sub>3</sub> powder                              | 950,           | 0.1 and 1 Torr,                                 | No soaking        | W <sub>18</sub> O <sub>49</sub> NWs       | Thermal                                         | Less      | 90-1000 nm               | > 1 µm             | 10   |

Table S1. The comparison table of  $W_{18}O_{49}$  1*d* nanostructures obtained via thermal annealing routes.

|                                             | 1000 | and Ar                                                |          |                                     | evaporation/VS         |                   |               |                 |       |
|---------------------------------------------|------|-------------------------------------------------------|----------|-------------------------------------|------------------------|-------------------|---------------|-----------------|-------|
|                                             | and  |                                                       |          |                                     |                        |                   |               |                 |       |
|                                             | 1050 |                                                       |          |                                     |                        |                   |               |                 |       |
| Milled W                                    | 1400 | Ar                                                    | -        | W <sub>18</sub> O <sub>49</sub> NWs | Thermal evaporation/VS | Less              | 30-50 nm      | 700 nm          | 11    |
| Sputtered tungsten film (150 nm thick)      | 650  | 15 Pa, Ar, and O <sub>2</sub><br>(0.1 sccm)           | 1 h      | W <sub>18</sub> O <sub>49</sub> NWs | Thermal Oxidative      | Moderate          | 10-20 nm      | 0.5 – 1<br>μm   | 12    |
| Amorphous W film                            | 650  | PLD (40 & 50<br>Pa)                                   | 10 h     | W <sub>18</sub> O <sub>49</sub> NWs | Vacuum<br>annealing    | Less              | 20-40 nm      | 0.85-0.36<br>μm | 13    |
| WO <sub>3</sub> powder covered with W sheet | 1000 | 100 m Torr,                                           | 1 h      | WO <sub>2.9</sub> NRs               | VS (expected)          | Moderate          | 80-400 nm     | 2-3 µm          | 14    |
| W powder                                    | 1100 | 10 Pa, Ar (100<br>sccm) + O <sub>2</sub> (1<br>sccm ) | 1-20 min | W <sub>18</sub> O <sub>49</sub> NWs | VS                     | Moderate          | -             | -               | 15    |
| W Coin                                      | 1400 | Ar (10 sccm)                                          | 10 h     | W <sub>18</sub> O <sub>49</sub> MRs | Thermal oxidative      | Moderate          | 0.1 to few µm | Few µm          | 16    |
| WO <sub>3</sub> Powder                      | 1100 | Ar and Sulphur<br>at upstream                         | 1 h      | W <sub>18</sub> O <sub>49</sub> MRs | VS                     | High/Mode<br>rate | Few µm        | Few µm          | 17,18 |
| Sputtered W films                           | 550  | Ar                                                    | 1 h      | W <sub>18</sub> O <sub>49</sub> NWs | Thermal oxidative      | Moderate          | 10-40 nm      | 400 nm          | 19    |
|                                             |      |                                                       |          |                                     |                        |                   |               |                 |       |

C.W.- current work, NWs- nanowires, NRs- nanorods, NBs- nanobundles, NNs- nanoneedles, MRs- microrods, MBs- microbundles, SS- solid solid, VS- vapor solid

#### S.6: W-O-H phase diagram

The W-O-H phase diagram is adapted from the literature.<sup>20,21</sup> The original version of the  $p[H_2]$ 

diagram consists of only X and Y-axis drawn as  $10^3 \text{ T}^{-1}(\text{K}) \text{ Vs} \overline{p[H_2O]}$ . To improve the understandability, the diagram is implemented or redrawn here as a new figure with more elaboration in **Figure S6**. For a better understanding, a top X-axis showing the temperature in °C is added. The values of the same were calculated from the  $10^3 \text{ T}^{-1}(\text{K})$  value of the bottom X-axis. Similarly, a new right Y-axis with %H<sub>2</sub>O values, which were calculated from the  $p[H_2]$ 

 $\overline{p[H_2O]}$  values of left Y-axis. Additionally, the crystal structures of the phases were given in their corresponding regions for the crystallographic representation.



Figure S6. The equilibrium phase diagram showing the stability regions of tungsten oxides with respect to the  $%H_2O$  and temperature. The phase diagram is redrawn as reported elsewhere.<sup>20,21</sup>

**S.7: XPS** 



Figure S7. The XPS full survey of W, W@450°C, and W@650°C.

The binding energies corresponding to each peak obtained from the W 4f and O 1s spectra of all samples are tabulated in **Table S2**. Also, the percentages of the oxidation states were estimated using the area of peaks obtained after deconvolution.

| Table S2. | XPS | peak | positions | of | the | W | 4f | spectra | of | W, | W@450°C, | W@650°C, | and |
|-----------|-----|------|-----------|----|-----|---|----|---------|----|----|----------|----------|-----|
| W@800°C   |     |      |           |    |     |   |    |         |    |    |          |          |     |

W

| Peak     | W5p <sub>3/2</sub> | W <sup>6+</sup> (W4f <sub>5/2</sub> ) | W <sup>6+</sup> (W4f <sub>7/2</sub> ) | W <sup>5+</sup> | W(W4f <sub>5/2</sub> ) | W(W4f <sub>7/2</sub> ) |
|----------|--------------------|---------------------------------------|---------------------------------------|-----------------|------------------------|------------------------|
| Position | 41.63              | 37.73                                 | 35.63                                 | -               | 33.4                   | 31.28                  |
| Area     | 2333.61            | 78900.06                              | 103843.3                              | -               | 58096.8                | 60691.61               |
| %        |                    | W <sup>6+</sup> = 60.14               |                                       | $W^{5+} = 0$    | W = 39.09              |                        |

W@450°C

| %        |         | W <sup>6+</sup> = 68.62 |          |          | W <sup>5+</sup> =18.0 | 7        | W = 11.14 |         |          |
|----------|---------|-------------------------|----------|----------|-----------------------|----------|-----------|---------|----------|
| Area     | 4318.76 | 1230.34                 | 63760.04 | 71625.91 | 7575.27               | 28397.68 | 4284.37   | 2706.68 | 15192.95 |
| Position | 41.459  | 39.31                   | 37.828   | 35.77    | 36.763                | 34.32    | 33.601    | 32.235  | 31.47    |

W@650°C

| %        |          | W <sup>6+</sup> = 61.18 | W <sup>5+</sup> = 31.5 | 9        | W = 1.32 |   |         |
|----------|----------|-------------------------|------------------------|----------|----------|---|---------|
| Area     | 13471.89 | 65992.42                | 73581.45               | 12993.46 | 59064.54 | - | 3013.02 |
| Position | 41.146   | 38.073                  | 36.119                 | 37.652   | 34.953   | - | 31.646  |

W@800°C

| Position | 40.479   | 37.669                         | 37.497   | 35.444    | 36.368                  | 34.073    | -            | - |
|----------|----------|--------------------------------|----------|-----------|-------------------------|-----------|--------------|---|
| Area     | 29440.28 | 78825.09                       | 71701.22 | 129195.90 | 63464.28                | 104525.10 | -            | - |
| %        |          | W <sup>6+</sup> = <b>58.62</b> |          |           | W <sup>5+</sup> = 35.20 |           | <b>W</b> = 0 |   |

## **References:**

- 1 G. Gu, B. Zheng, W. Q. Han, S. Roth and J. Liu, 2002, **2**, 849–851.
- 2 Y. Z. Jin, Y. Q. Zhu, R. L. D. Whitby, N. Yao, R. Ma, P. C. P. Watts, H. W. Kroto and

D. R. M. Walton, J. Phys. Chem. B, 2004, 108, 15572-15577.

- 3 J. Zhou, L. Gong, S. Z. Deng, J. Chen, J. C. She, N. S. Xu, R. Yang and Z. L. Wang, *Appl. Phys. Lett.*, 2005, 87, 223108.
- 4 L. Chi, N. Xu, S. Deng, J. Chen and J. She, *Nanotechnology*, 2006, **17**, 5590–5595.
- 5 K. Hong, M. Xie and H. Wu, *Nanotechnology*, 2006, **17**, 4830–4833.
- S. Shi, X. Xue, P. Feng, Y. Liu, H. Zhao and T. Wang, J. Cryst. Growth, 2008, 310, 462–466.
- 7 K. Hong, M. Xie, R. Hu and H. Wu, *Appl. Phys. Lett.*, 2007, **90**, 173121.
- Y. Kojima, K. Kasuya, K. Nagato, T. Hamaguchi and M. Nakao, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct., 2008, 26, 1942–1947.
- 9 L. F. Chi, S. Z. Deng, N. S. Xu, J. Chen, J. C. She and X. H. Liang, J. Phys. Conf. Ser., 2009, 188, 012021.
- N. Van Hieu, H. Van Vuong, N. Van Duy and N. D. Hoa, *Sensors Actuators B Chem.*, 2012, 171–172, 760–768.
- A. K. Srivastav, J. Basu, S. Kashyap, N. Chawake, D. Yadav and B. S. S. Murty, *Scr. Mater.*, 2016, **115**, 28–32.
- 12 Y. Qin, W. Xie, Y. Liu and Z. Ye, Sensors Actuators B Chem., 2016, 223, 487–495.
- D. Dellasega, S. M. Pietralunga, A. Pezzoli, V. Russo, L. Nasi, C. Conti, M. J. Vahid,
  A. Tagliaferri and M. Passoni, *Nanotechnology*, 2015, 26, 365601.
- 14 K. Senthil and K. Yong, *Nanotechnology*, 2007, **18**, 395604.
- 15 J. Y. Luo, F. Chen, Z. Cao, W. H. Zheng, H. C. Liu, Y. D. Li, G. T. Yang and Q. G. Zeng, *CrystEngComm*, 2015, **17**, 889–894.
- L. Zhu, Z. Zhang, X. Ke, J. Wang, J. Perepezko and M. Sui, *Acta Mater.*, 2018, 148, 55–62.
- 17 Z. Shen, Z. Peng, Z. Zhao and X. Fu, *Solid State Sci.*, 2018, **78**, 126–132.
- W. Yu, Z. Shen, F. Peng, Y. Lu, M. Ge, X. Fu, Y. Sun, X. Chen and N. Dai, *RSC Adv.*, 2019, 9, 7723–7728.
- 19 D. Spanu, S. Recchia, P. Schmuki and M. Altomare, *Phys. status solidi Rapid Res.* Lett., 2020, 14, 2000235.

- 20 R. Haubner, W. Schubert, E. Lassner, M. Schreiner and B. Lux, Int. J. Refract. Met. Hard Mater., 1983, 2, 108–115.
- 21 E. Lassner and W.-D. Schubert, in *Tungsten properties, chemistry, technology of the element, alloys, and chemical compounds*, Kluwer Academic / Plenum Publishers, New York, 1998, pp. 85–132.