# Exploring the diversity of elastic responses of crystalline cadmium(II) coordination polymers: From elastic towards plastic and brittle

Mateja Pisačić,<sup>a</sup> Ivan Kodrin,<sup>a</sup> Ivana Biljan,<sup>a</sup> and Marijana Đaković<sup>a\*</sup>

<sup>a</sup>Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia

Supplementary information

## Table of Contents

| 1. | Synthesis                   | 3  |
|----|-----------------------------|----|
|    | Intermolecular interactions |    |
| 3. | Crystal bending experiments | 7  |
| 4. | Atomic force microscopy     | 14 |
| 5. | Computational study         | 16 |
| 6. | References                  | 20 |

# 1. Synthesis

# Crystal growth

Crystals (1-3) were grown in test tubes by layering an aqueous solution of cadmium(II) salt with pure ethanol (1 mL) and then with an ethanol solution of the corresponding ligand.

 $[CdCl_2(3-Clpy)_2]_n$ , (1, IPAYED). Used: CdCl\_2 aqueous solution (1 mL, 0.048 mol dm<sup>-3</sup>), 3-Clpy ethanol solution (2 mL, 0.050 mol dm<sup>-3</sup>).

 $[CdCl_2(3-Brpy)_2]_n$ , (**2**, **IPAYUT**). Used: CdCl<sub>2</sub> aqueous solution (1 mL, 0.051 mol dm<sup>-3</sup>), 3-Brpy ethanol solution (2 mL, 0.049 mol dm<sup>-3</sup>).

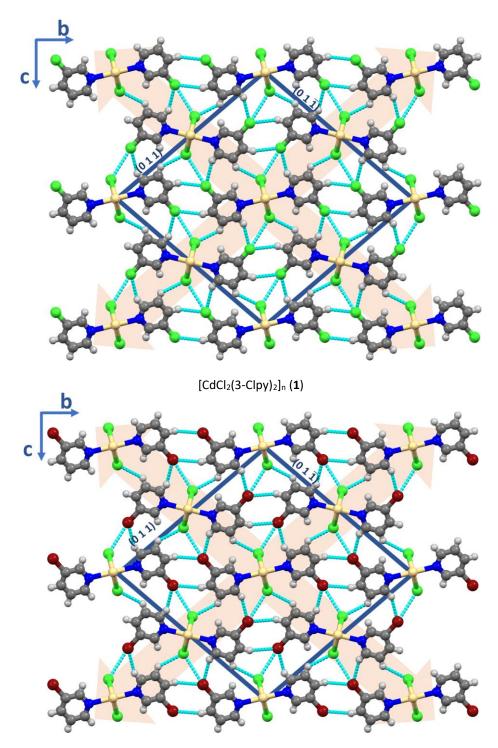
 $[CdBr_2(3-Brpy)_2]_n$ , (**3**, **IPAZAA**). Used: CdBr<sub>2</sub> aqueous solution (1 mL, 0.053 mol dm<sup>-3</sup>), 3-Brpy ethanol solution (2 mL, 0.049 mol dm<sup>-3</sup>).

#### 2. Intermolecular interactions

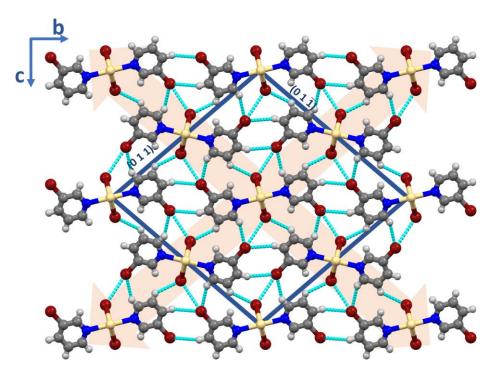
| D—H…A                           | d(H…A) / Å | d(D…A) / Å | ∠ (D—H…A) / ° | R <sub>Hx</sub> <sup>a</sup> |
|---------------------------------|------------|------------|---------------|------------------------------|
| 1(IPAYED)                       |            |            |               |                              |
| C3—H2…Cl2 <sup><i>i</i></sup>   | 2,98       | 3.830(6)   | 145.0         | 1.01                         |
| C4—H3…Cl1 <sup>#</sup>          | 2.87       | 3.646(6)   | 136.0         | 0.97                         |
| C5—H4…Cl2 <sup>##</sup>         | 3.04       | 3.910(5)   | 149.0         | 1.03                         |
|                                 |            |            |               |                              |
| 2(IPAYUT)                       | 0.05       | 0.000(4)   |               | 0.00                         |
| C3—H2…Br1 <sup>i</sup>          | 3.05       | 3.903(4)   | 146.0         | 0.99                         |
| C4—H3…Cl1 <sup>#</sup>          | 2.95       | 3.736(4)   | 138.0         | 1.00                         |
| C5—H4…Br1 <sup>iii</sup>        | 3.00       | 3.875(4)   | 150.0         | 0.98                         |
| 3 (IPAZAA)                      |            |            |               |                              |
| C3—H2···Br2 <sup><i>i</i></sup> | 3.14       | 4.003(3)   | 148.0         | 1.03                         |
| C4—H3…Br1 <sup>ii</sup>         | 3.01       | 3.777(4)   | 136.0         | 0.98                         |
| C5—H4…Br2 <sup>iii</sup>        | 3.17       | 4.027(3)   | 147.0         | 1.04                         |

**Table S1.** Details on hydrogen bond geometry (Å,  $^{\circ}$ ) for **1–3.** 

<sup>a</sup> The normalized distance, *R*, defined according to Lommerse *et al.*<sup>1</sup>  $R_{HX} = d(H \cdots A) / (r_H + r_A)$ , where  $r_H$  and  $r_A$  are the Bondi van der Waals radii of the respective hydrogen-bond donor and acceptor atoms (H 1.20, Cl 1.75 or Br 1.86 Å) in the C— H…X hydrogen bond.


Symmetry codes (i): -x, -y+1, -z; (ii) -x-1, y+1/2, -z-1/2; (iii): -x+1/2, y+1/2, -z+1/2

| Table S2. Details on ha | logen bond geometr | y (Å, ˚ | ') for <b>1–3.</b> |
|-------------------------|--------------------|---------|--------------------|
|-------------------------|--------------------|---------|--------------------|


| D—X1…X2                               | d(X1…X2) / Å | ∠ (D—X…A) / ° | $R_{X1X2}^{a}$ |
|---------------------------------------|--------------|---------------|----------------|
| 1 (IPAYIH)                            |              |               |                |
| C2—Cl2…Cl1 <sup>i</sup><br>2 (IPAYON) | 3.617(2)     | 164.01(18)    | 1.033          |
| C2—Br1…Cl1 <sup>i</sup>               | 3.5704(12)   | 164.58(11)    | 0.989          |
| 3 (IPAZEE)                            |              |               |                |
| C2—Br2…Br1 <sup>i</sup>               | 3.6260(14)   | 166.37(10)    | 0.975          |

<sup>a</sup> The normalized distance, *R*, defined according to Lommerse *et al*<sup>1</sup>  $R_{X1X2} = d(X1\cdots X2) / (r1 + r2)$ , where *r*1 and *r*2 are the Bondi van der Waals radii of the respective halogen atoms (Cl 1.75 or Br 1.86 Å) in the D—X1···X2 halogen bond.

Symmetry code: (*i*): 1+x,1/2-y,1/2+z

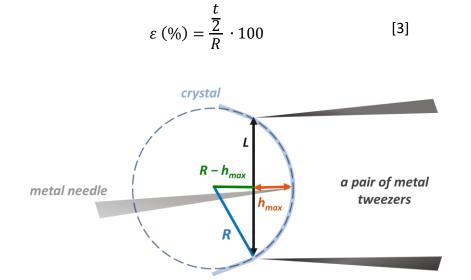


[CdCl<sub>2</sub>(3-Brpy)<sub>2</sub>]<sub>n</sub> (**2**)

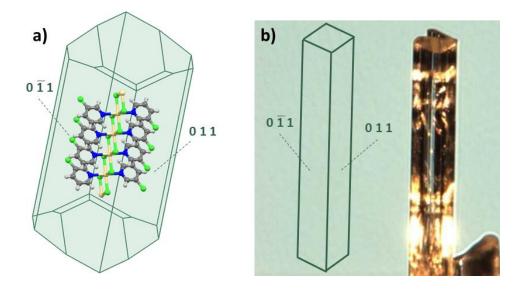


[CdBr<sub>2</sub>(3-Brpy)<sub>2</sub>]<sub>n</sub> (3)

**Figure S1.** The relative orientation of adjacent polymeric chains (a view down the *a* axis) in the crystal structures of **1**–**3**, linked via halogen and hydrogen bonds listed in tables S1 and S2, shown as blue dotted lines, forming a 2-D network in the directions orthogonal to the elongation of the crystal. Crystal faces  $(011)/(0\overline{11})$  and  $(0\overline{11})/(01\overline{1})$  are indicated by blue lines. Directions along which the mechanical force is applied are indicated by pale orange arrows.


#### 3. Crystal bending experiments

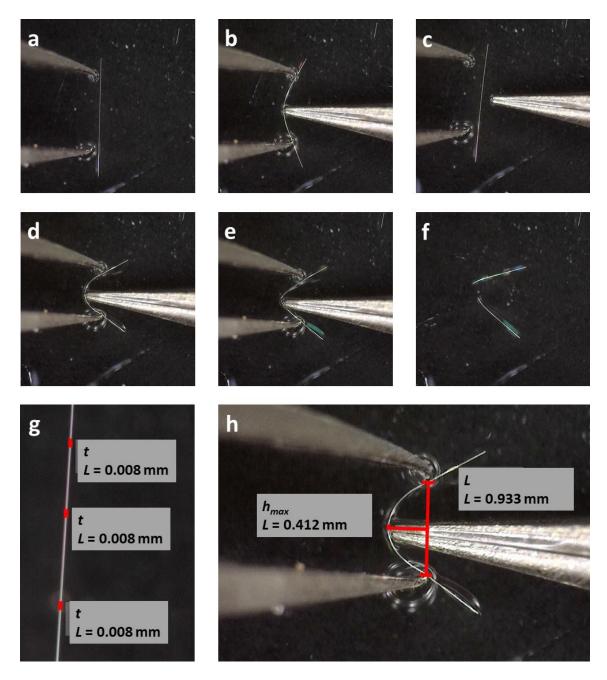
The extent of elastic response of the crystals **1–3** was quantified using Euler-Bernoulli equation.<sup>2</sup> For that purpose, thickness (*t*) of the crystals, together with the distance between the tips of metal tweezers holding the bent crystal (*L*) and maximal displacement ( $h_{max}$ ) at a point of maximal curvature, i.e. just before the breakage of a crystal, were measured (Figure S2). The radius of circle describing curvature of bent crystal was calculated using geometrical construction presented in Figure S2 [1, 2]:


$$R^{2} = \left(\frac{L}{2}\right)^{2} + (R - h_{\max})^{2}$$
[1]

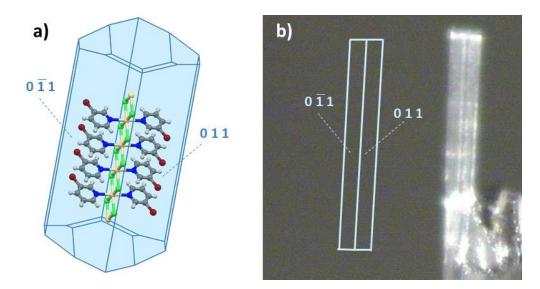
$$R = \frac{\left(\frac{L}{2}\right) + h_{max}^2}{2h_{max}}$$
[2]

The bending strain was calculated from Euler-Bernoulli equation [3]<sup>2</sup> (considering pure bending without shear component):




**Figure S2.** Schematic representation of three-point bending experiment highlighting measured (black arrow, distance between tips of metal tweezers, *L*; orange arrow, maximal displacement,  $h_{max}$ ) and calculated (blue line, radius of the circle approximating the curvature of the bent crystal, *R*) geometrical parameters needed for determining bending strain ( $\varepsilon$ ).

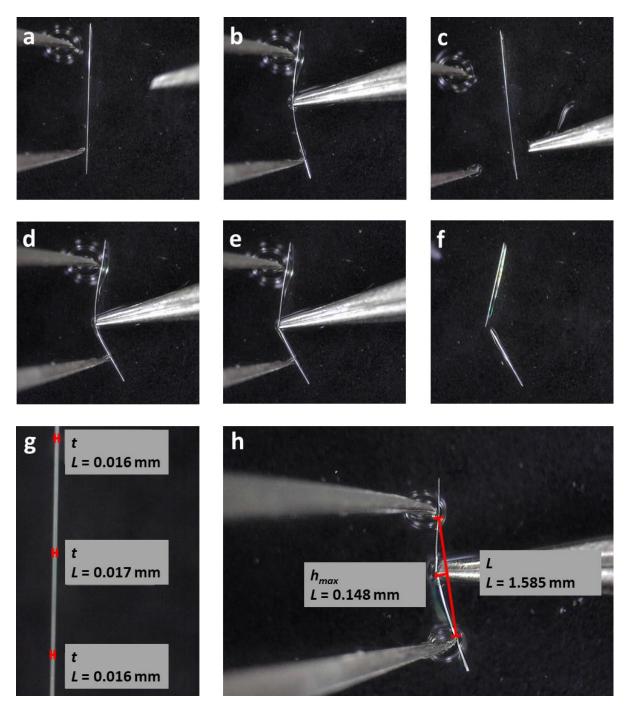



**Figure S3.** Face indexing (a) and calculated BFDH morphology (using Mercury 4.3.1)<sup>3</sup> (b) for  $[CdCl_2(3-Clpy)_2]_n$  (1).

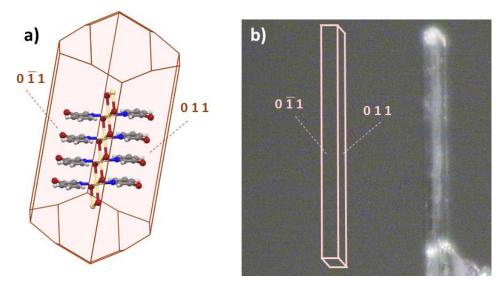
**Table S3.** Geometrical parameters used to calculate bending strain ( $\varepsilon$ ). The mean value of the bending strain (shown in red) was determined on the basis of measurements of ten different crystals for the compound **1** (from several different batches) by applying mechanical force on the  $(011)/(0\overline{11})$  or  $(0\overline{11})/(01\overline{1})$  pair of crystal faces. Thickness (t) of the selected crystals was measured before bending, while length (L) and maximal displacement ( $h_{max}$ ) were measured at the point of maximal curvature (see Figure S4 below).

| Sample | ī̄∕mm | <i>L /</i> mm | <i>h<sub>max</sub> /</i> mm | <i>R</i> / mm | ε / mm      |
|--------|-------|---------------|-----------------------------|---------------|-------------|
| 1-1    | 0.016 | 2.277         | 0.573                       | 1.418         | 0.58        |
| 1-2    | 0.008 | 0.933         | 0. 412                      | 0.470         | 0.85        |
| 1-3    | 0.015 | 1.999         | 0.553                       | 1.180         | 0.65        |
| 1-4    | 0.022 | 2.368         | 0.498                       | 1.656         | 0.66        |
| 1-5    | 0.028 | 2.255         | 0.261                       | 2.566         | 0.55        |
| 1-6    | 0.031 | 1.850         | 0.223                       | 2.030         | 0.76        |
| 1-7    | 0.015 | 1.837         | 0.606                       | 0.999         | 0.73        |
| 1-8    | 0.017 | 1.596         | 0.418                       | 0.971         | 0.88        |
| 1-9    | 0.021 | 2.211         | 0.706                       | 1.219         | 0.86        |
| 1-10   | 0.028 | 2.387         | 0.345                       | 2.237         | 0.62        |
|        |       |               |                             | average       | 0.71 ± 0.12 |




**Figure S4.** Bending experiment with  $[CdCl_2(3-Clpy)_2]_n$  (**1**, sample **1-2**; images a–f, h magnified 50 times; image g magnified 200 times),  $\varepsilon = 0.85$  %. Slight elastic bending of the crystal followed by relaxation (a–c); the crystal fractures once bent over the critical radius (d–f) with plastically deformed ends of the broken crystal (f). Geometrical parameters: (g) thickness, t, (h) length, L, and maximal displacement, h.

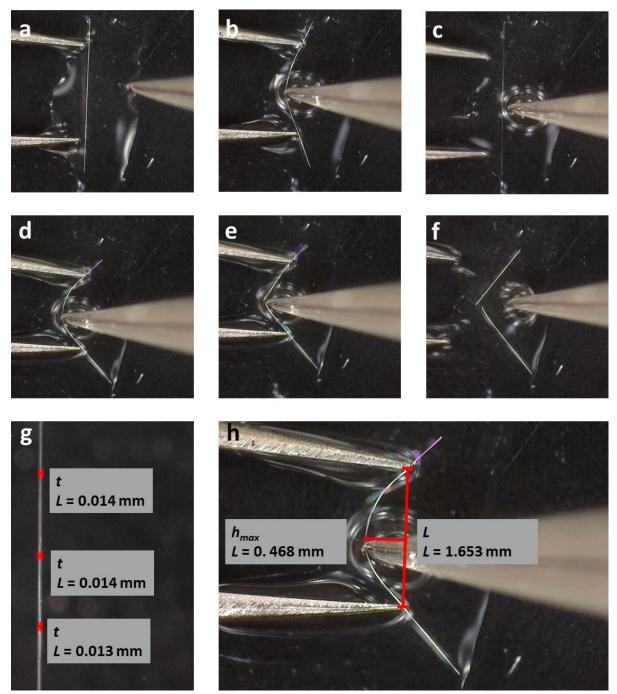



**Figure S5.** Face indexing (a) and calculated BFDH morphology (using Mercury 4.3.1)<sup>3</sup> (b) for  $[CdCl_2(3-Brpy)_2]_n$  (**2**).

**Table S4.** Geometrical parameters used to calculate bending strain ( $\varepsilon$ ). The mean value of the bending strain (shown in red) was determined on the basis of measurements of ten different crystals for the compound **2** (from several different batches) by applying mechanical force on the (011)/(011) or (011)/(011) pair of crystal faces. Thickness (t) of the selected crystals was measured before bending, length (L) and maximal displacement ( $h_{max}$ ) were measured at the point of maximal curvature (see Figure S6 below).

| Sample | $ar{t}$ / mm | <i>L</i> / mm | <i>h<sub>max</sub> / mm</i> | <i>R</i> / mm | ε / mm      |
|--------|--------------|---------------|-----------------------------|---------------|-------------|
| 2-1    | 0.016        | 1.624         | 0.198                       | 1.764         | 0.46        |
| 2-2    | 0.019        | 2.023         | 0.248                       | 2.187         | 0.44        |
| 2-3    | 0.023        | 1.415         | 0.125                       | 2.065         | 0.56        |
| 2-4    | 0.030        | 1.982         | 0.150                       | 3.349         | 0.45        |
| 2-5    | 0.026        | 1.236         | 0.094                       | 2.079         | 0.63        |
| 2-6    | 0.019        | 1.478         | 0.115                       | 2.432         | 0.40        |
| 2-7    | 0.032        | 1.366         | 0.061                       | 3.854         | 0.41        |
| 2-8    | 0.031        | 2.333         | 0.229                       | 3.086         | 0.50        |
| 2-9    | 0.022        | 1.561         | 0.128                       | 2.444         | 0.45        |
| 2-10   | 0.014        | 1.061         | 0.081                       | 1.778         | 0.38        |
|        | -            | -             | -                           | average       | 0.47 ± 0.08 |




**Figure S6.** Bending experiment with  $[CdCl_2(3-Brpy)_2]_n$  (**2**, sample **2-1**; images a-f, h magnified 50 times; image g magnified 200 times),  $\varepsilon = 0.46$  %. Slight elastic bending of the crystal followed by relaxation (a–c); crystal fractures once bent over the critical radius (d–f). Geometrical parameters: (g) thickness *t*, (h) length *L* and maximal displacement *h* 

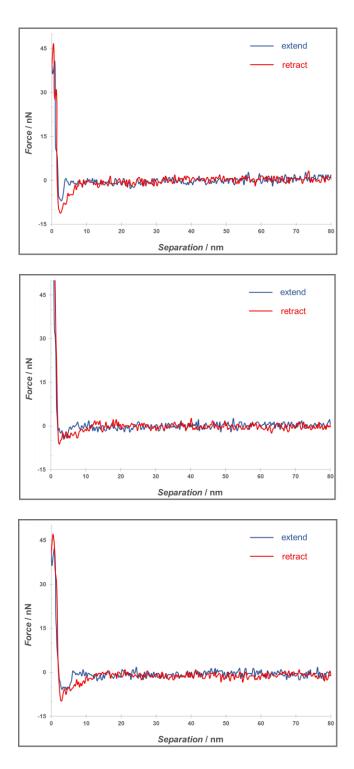


**Figure S7.** Face indexing (a) and calculated BFDH morphology (using Mercury 4.3.1)<sup>3</sup> (b) for crystals of [CdBr<sub>2</sub>(3-Brpy)<sub>2</sub>]<sub>n</sub> (**3**).

**Table S5.** Geometrical parameters used to calculate bending strain ( $\varepsilon$ ). The mean value of the bending strain (shown in red) was determined on the basis of measurements of ten different crystals for the compound **3** (from several different batches) by applying mechanical force on the  $(011)/(0\overline{11})$  or  $(0\overline{11})/(01\overline{1})$  pair of crystal faces. Thickness (t) of the selected crystals was measured before bending, length (L) and maximal displacement ( $h_{max}$ ) were measured at the point of maximal curvature (see Figure S8 below).

| Sample | ī / mm | <i>L</i> / mm | <i>h<sub>max</sub> /</i> mm | <i>R</i> / mm | ε / mm      |
|--------|--------|---------------|-----------------------------|---------------|-------------|
| 3-1    | 0.021  | 1.965         | 0.303                       | 1.744         | 0.60        |
| 3-2    | 0.011  | 1.720         | 0.314                       | 1.335         | 0.41        |
| 3-3    | 0.027  | 1.708         | 0.141                       | 2.657         | 0.51        |
| 3-4    | 0.013  | 1.658         | 0.450                       | 0.989         | 0.66        |
| 3-5    | 0.034  | 2.032         | 0.219                       | 2.466         | 0.69        |
| 3-6    | 0.025  | 2.160         | 0.265                       | 2.333         | 0.54        |
| 3-7    | 0.021  | 1.977         | 0.307                       | 1.745         | 0.60        |
| 3-8    | 0.026  | 2.202         | 0.307                       | 2.128         | 0.62        |
| 3-9    | 0.020  | 1.604         | 0.184                       | 1.840         | 0.53        |
| 3-10   | 0.014  | 1.653         | 0.468                       | 0.964         | 0.71        |
|        |        |               |                             | average       | 0.59 ± 0.09 |

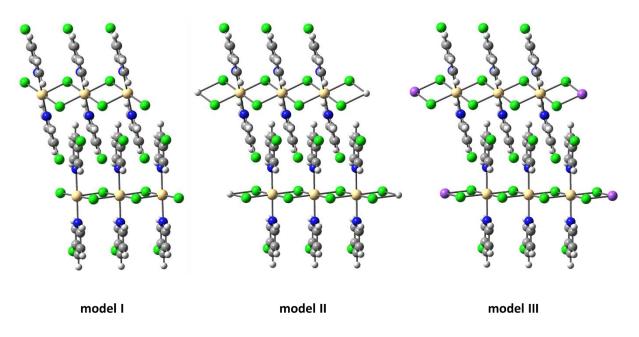



**Figure S8.** Bending experiment with  $[CdBr_2(3-Brpy)_2]_n$  (**3**, sample **3-10**; images a-f, h magnified 50 times; image g magnified 200 times),  $\varepsilon = 0.71$  %. Slight elastic bending of the crystal followed by relaxation (a–c); crystal fractures once bent over the critical radius (d–f) with slightly plastically deformed ends of broken crystal (f). Geometrical parameters: (g) thickness *t*, (h) length *L* and maximal displacement *h*.

### 4. Atomic force microscopy

The Young's moduli of straight crystals **1–3** shown in Table S6 are averaged values of Young's moduli acquired from fitting force-separation curves (at least 1500 data points were collected) for each compound.

| Compound                                                             | E/ GPa      |
|----------------------------------------------------------------------|-------------|
| $[CdCl_2(3-Clpy)_2]_n$ (1)                                           | 3.58 ± 1.02 |
| [CdCl <sub>2</sub> (3-Brpy) <sub>2</sub> ] <sub>n</sub> ( <b>2</b> ) | 9.50 ± 2.15 |
| [CdBr <sub>2</sub> (3-Brpy) <sub>2</sub> ] <sub>n</sub> ( <b>3</b> ) | 4.55 ± 0.85 |


Table S6. Young's moduli obtained on straight crystals of 1–3.

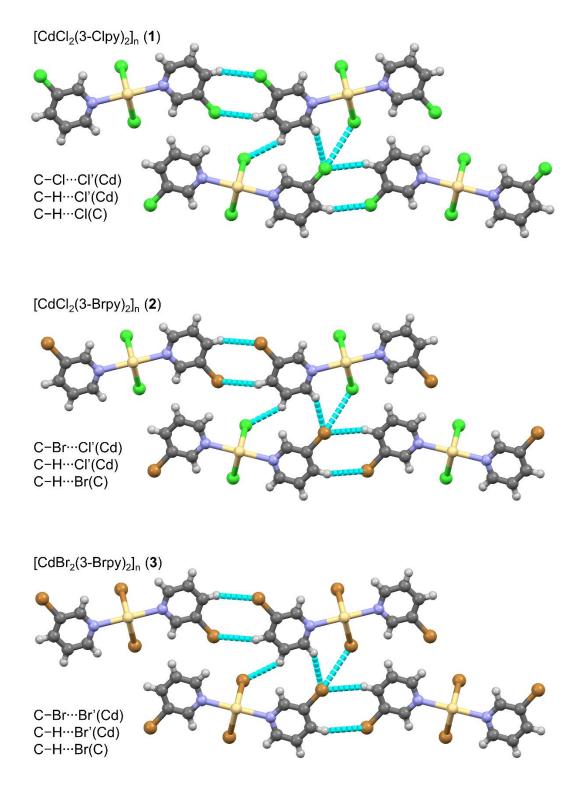


**Figure S9.** Force distance curves for  $[CdCl_2(3-Clpy)_2]_n$  (1) (top),  $[CdCl_2(3-Brpy)_2]_n$  (2) (middle) and  $[CdBr_2(3-Brpy)_2]_n$  (3) (bottom).

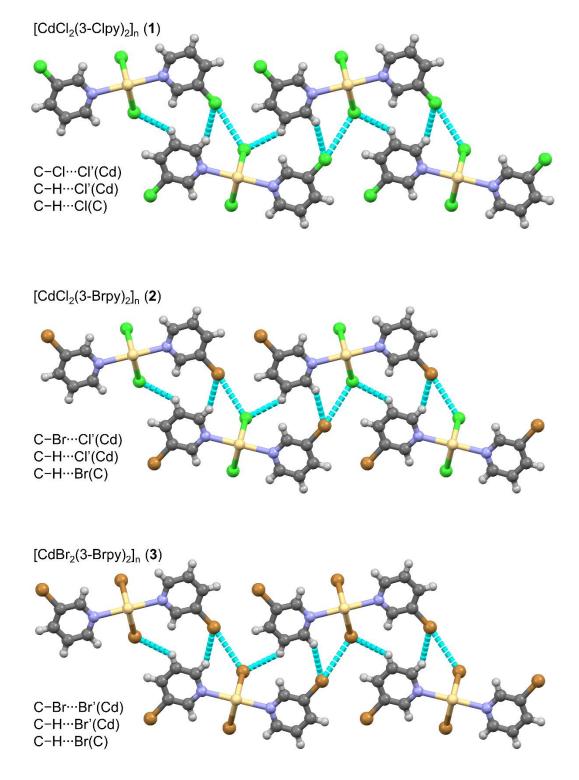
#### 5. Computational study

The interactions between 1-D coordination polymers were calculated in the way that each adjacent 1-D coordination polymer was truncated from the crystal structure as an electroneutral chain made of three metal centres to obtain more representative results in comparison with only one metal centre. In **model I**, terminal metal centres were not octahedrally coordinated, but two halides were left out from the structure to retain electroneutrality. Very similar trends (see  $\Delta E_{int}$  values in Tables S7 and S8) were obtained for **models II** and **III** in which negative charge on the terminal octahedrally coordinated metal centres were neutralized via capping by cationic species (like H<sup>+</sup> and Na<sup>+</sup>). Due to almost the same  $\Delta E_{int}$  values in all three models, we have opted to pursue the structurally simpler **model I**.




**Figure S10.** Three models used for calculation of interaction energies between single pairs of the truncated 1-D coordination polymers (trimeric units) of compounds **1** and **3**. All three models included electroneutral chains. In **model I** two terminal halides were left out, while **model II** and **model III** involved trimeric units terminally capped by two cations, H<sup>+</sup> or Na<sup>+</sup>, respectively.

| Table S7. Interaction energies (describing A type, Figure 5) and energy differences between the |
|-------------------------------------------------------------------------------------------------|
| single pairs of the truncated 1-D coordination polymers of compounds <b>1</b> and <b>3</b> .    |


| model | E <sub>int</sub> / kJ mol <sup>−1</sup><br>compound 1 | E <sub>int</sub> / kJ mol <sup>−1</sup><br>compound 3 | ∆E <sub>int</sub> / kJ mol <sup>–1</sup> |
|-------|-------------------------------------------------------|-------------------------------------------------------|------------------------------------------|
| I     | -30.68                                                | -35.31                                                | 4.63                                     |
| П     | -25.93                                                | -30.21                                                | 4.28                                     |
|       | -27.87                                                | -32.77                                                | 4.90                                     |

**Table S8.** Interaction energies (describing **B** type, Figure 5) and energy differences between thesingle pairs of the truncated 1-D coordination polymers of compounds 1 and 3.

| model | <i>E</i> <sub>int</sub> / kJ mol <sup>−1</sup><br>compound 1 | <i>E</i> <sub>int</sub> / kJ mol <sup>−1</sup><br>compound 3 | ∆E <sub>int</sub> / kJ mol <sup>−1</sup> |
|-------|--------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------|
| I     | -8.67                                                        | -7.20                                                        | -1.47                                    |
| П     | -9.34                                                        | -7.84                                                        | -1.49                                    |
| Ш     | -9.89                                                        | -8.47                                                        | -1.42                                    |



**Figure S11.** Intermolecular interactions (model **C**, Figure 5) between double pairs of truncated 1-D coordination polymers in compounds **1–3**.



**Figure S12.** Intermolecular interactions (model **D**, Figure 5) between double pairs of truncated 1-D coordination polymers in compounds **1–3**.

### 6. References

- <sup>1</sup> Lommerse, J. P. M.; Stone, A. J.; Taylor, R.; Allen, F. H., *J. Am. Chem. Soc.*, 1996, **118**, 3108.
- <sup>2</sup> Timoshenko, S. Strength of materials, D. Van Nostrand Company, New York, 1940.
- <sup>3</sup> C. F. Macrae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler, P. A. Wood, *J. Appl. Cryst.*, 2020, **53**, 226.