

Gele Teri,^a Na Li,^a Sagala Bai,^a Namila E,^a and Menghe Baiyin^{*a}

(College of Chemistry & Environmental Science, Inner Mongolia Normal University, Hohhot, Inner Mongolia 010022, P. R. China)

*a E-mail:baiymh@imnu.edu.cn

Contents:

Table S1. Selected bond lengths [Å] and angles [°] for 1.

Table S2. Selected bond lengths [Å] and angles [°] for **2**.

Figure S1. SEM-EDS analysis of compounds 1 and 2.

Figure S2. Simulated and experimental power XRD patterns of compounds 1 and 2.

Figure S3. UV-vis reflectance spectra of compounds 1 and 2.

Figure S4. DTA analysis of compounds 1 and 2.

Figure S5. Photoluminescence spectra of compounds 1 and 2.

^{*}a Corresponding author. E-mail address: baiymh@imnu.edu.cn.

Se1-Sn1 ⁴	2.620(5)	Sel ⁴ -Hgl-Sel ⁸	116.10(10)
Hg1-Se1 ¹¹	2.620(5)	Se1 ⁴ -Hg1-Se1	96.91(18)
Hg1-Se1 ⁸	2.620(5)	Se1 ⁸ -Hg1-Se1 ¹¹	116.09(10)
Hg2-Se1 ⁴	2.620(5)	Se1 ⁸ -Hg1-Hg1 ¹⁴	48.45(9)
Hg3-Hg1 ⁴	3.4751(4)	Se1 ⁴ -Hg1-Hg1 ¹⁴	131.54(9)
Hg4-Hg1 ¹⁴	3.4751(4)	Se1 ⁴ -Hg1-Hg1 ⁴	48.45(9)
Hg5-Se1 ¹¹	2.620(5)	Se1-Hg1-Hg1 ¹⁴	131.55(9)
Hg6-Se1 ⁸	2.620(5)	Se1-Hg1-Hg1 ⁴	48.46(9)
Hg7-Se1 ⁴	2.620(5)	Sel ¹¹ -Hgl-Hgl ⁴	131.55(9)
Hg1-Se1-Hg1 ⁴	83.09(18)	Se1 ¹¹ -Hg1-Hg1 ¹⁴	48.46(9)
Hg1-Se1-Sn1 ⁴	83.09(18)	Se1 ⁸ -Hg1-Hg1 ⁴	131.54(9)
Sn1-Se1-Hg1	0	Hg1 ⁴ -Hg1-Hg1 ¹⁴	180
Sn14-Se1-Hg1 ⁴	0	Se14-Sn1-Se111	116.09(10)
Sn1-Se1-Hg1 ⁴	83.09(18)	Se1 ⁸ -Sn1-Se1 ¹¹	96.91(18)
Sn1-Se1-Sn1 ⁴	83.09(18)	Se1-Sn1-Se1 ¹¹	116.09(10)
Se1 ⁴ -Hg1-Se1 ¹¹	116.09(10)	Se1 ⁴ -Sn1-Se1 ⁸	116.10(10)
Se1 ⁸ -Hg1-Se1 ¹¹	96.91(18)	Sel ⁴ -Snl-Sel	96.91(18)
Sel-Hgl-Sel ¹¹	116.09(10)	Se1 ⁸ -Sn1-Se1	116.09(10)

Table S1 Selected bond lengths (Å) and angles (°) for compound $K_2HgSnSe_4$ (1)

Table S2 Selected bond lengths (Å) and angles (°) for compound $Na_6Cu_8Sn_3Se_{13}$ (2)

Sn01-Se03	2.5392(13)	Se03 ¹⁰ -Cu04-Cu04 ⁹	106.19(4)
Sn01-Se031	2.5392(13)	Se03 ¹⁰ -Cu04-Cu04 ³	52.37(5)
Sn01-Se03 ²	2.5392(13)	Se03-Cu04-Cu049	137.84(4)
Sn01-Se03 ³	2.5392(13)	Cu04 ⁹ -Cu04-Cu04 ³	90.003(1)
Se02-Cu04	2.555(2)	Cu049-Cu04-Cu044	90.003(1)
Se02-Cu04 ⁴	2.555(2)	Cu04 ³ -Cu04-Cu04 ⁴	90
Se02-Cu04 ⁵	2.555(2)	Se03-Sn01-Se031	106.50(3)
Se02-Cu04 ³	2.555(2)	Se031-Sn01-Se032	115.60(6)
Se02-Cu04 ⁶	2.555(2)	Se03-Sn01-Se03 ²	106.50(3)
Se02-Cu04 ⁷	2.555(2)	Se031-Sn01-Se033	106.50(3)
Se02-Cu04 ⁸	2.555(2)	Se03-Sn01-Se03 ³	115.60(6)
Se02-Cu04 ⁹	2.555(2)	Se03 ² -Sn01-Se03 ³	106.50(3)
Se03-Cu049	2.4157(11)	Cu043-Se02-Cu044	109.5
Se03-Cu04 ⁹	2.4158(11)	Cu04-Se02-Cu04 ⁴	70.5
Cu04-Cu04 ⁶	2.950(3)	Cu04 ⁵ -Se02-Cu04 ⁶	70.5
Cu04-Cu04 ³	2.950(3)	Cu047-Se02-Cu048	109.5
Cu04-Cu04 ⁹	2.950(3)	Cu047-Se02-Cu044	70.5
Cu04-Se02-Cu047	109.5	Cu04 ⁵ -Se02-Cu04 ⁸	70.5
Cu049-Se02-Cu046	70.5	Cu04-Se02-Cu048	109.5
Cu04 ⁶ -Se02-Cu04 ⁸	109.5	Cu04 ⁵ -Se02-Cu04 ⁴	109.5
Cu04-Se03-Sn01	99.15(4)	Cu04 ⁵ -Se02-Cu04 ³	109.5

Figure S1. (a) SEM-EDS analysis of compound 1; (b) SEM-EDS analysis of compound 2.

Figure S2. Simulated and experimental power XRD patterns of compounds 1 and 2.

Figure S3. UV-vis reflectance spectra of compounds 1 and 2.

Figure S4. DTA analysis of compounds 1 and 2.

Figure S5. (a) Photoluminescence spectra of compound 1;(b) Photoluminescence spectra of compound 2.