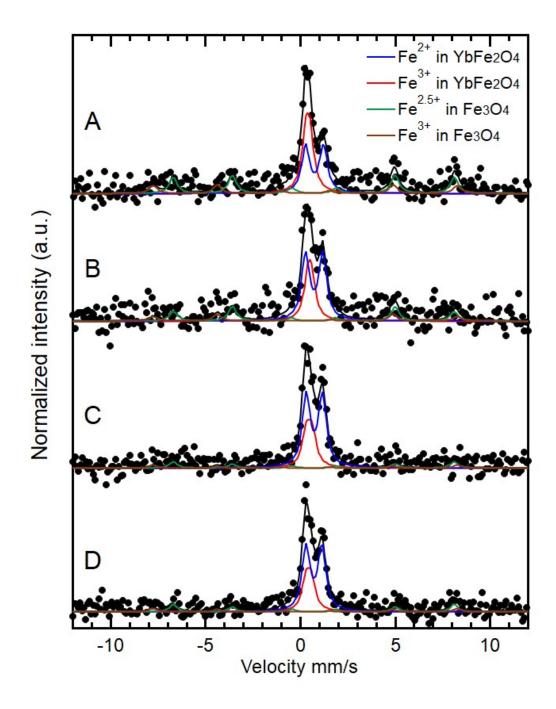
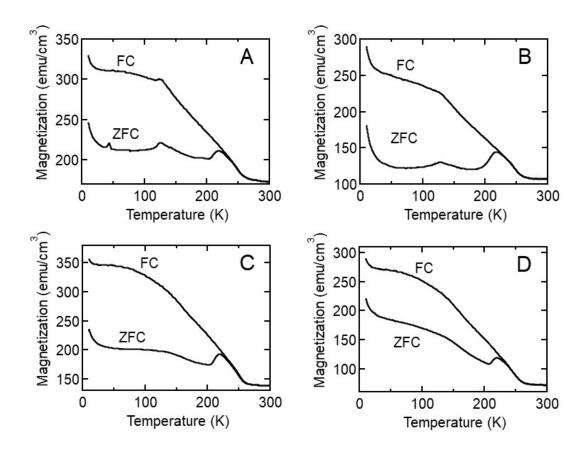
Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2021


Supporting information

Single domain growth and charge ordering of epitaxial YbFe₂O₄ films


Takumi SAKAGAMI,¹ Reika OTA,¹ Jun KANO,¹ Naoshi IKEDA², and Tatsuo FUJII^{1,*}

¹Department of Applied Chemistry, Okayama University, Okayama 700-8530, Japan

²Department of Physics, Okayama University, Okayama 700-8530, Japan

Figure S1. Wide velocity range Mössbauer spectra at RT of YbFe₂O_{4- δ} films on YSZ (111) substrates at various P_{O2} conditions. For the fitting procedure, Mössbauer hyperfine parameters of Fe₃O₄ impurities were fixed to the literature values¹ of the stoichiometric Fe₃O₄ film due to their small spectral intensity.

Figure S2. Field-cooled (FC) and zero-field-cooled (ZFC) magnetization curves of YbFe₂O_{4- δ} films on YSZ (111) substrates at various P_{O2} conditions. External magnetic field of 5 kOe was applied perpendicular to the film plane.

Reference

 T. Fujii, M. Takano, R. Katano, Y. Bando and Y. Isozumi, J. Appl. Phys., 1990, 68, 1735-1740.