Supporting Information

Design of hierarchical SnSe₂ for efficient trace detection of NO₂ at room-

temperature

Tingting Wang^a, You Wang^{a,b,*} Shengliang Zheng^b, Quan Sun^b, Ruozhen Wu^b and Juanyuan Hao^{b,*}

^a School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of

China

^b School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China

*Corresponding Author

E-mail: y-wang@hit.edu.cn

E-mail: jyhao@hit.edu.cn

Fig. S1 Fabricated technological process diagram of gas sensor.

Fig. S2 (a) SEM and (b-c) TEM images of SnSe₂-36h sample.

Fig. S3 SEM images of (a) $SnSe_2$ -48h and (b) $SnSe_2$ -60h samples.

Fig. S4 Survey XPS spectrum of the SnSe₂ hierarchical nanostructures.

Fig. S5 Response/recovery curves of SnSe₂-36h and SnSe₂-60h to 10 ppm NO₂.

Fig. S6 Selectivity response of SnSe₂ sensor toward 100 ppm VOCs (ethanol, methanol, isopropanol, acetone, and formaldehyde).

Fig. S7 The resistance variations and sensing response (inset) of the $SnSe_2$ hierarchical structures toward 10 ppm NO_2 on 5 different sensing devices.

Fig. S8 The response and recovery curve of the $SnSe_2$ sensor after aging 0.5 month and 5 months to 10 ppm NO_2 at room-temperature.

Fig. S9 Sensing mechanism of SnSe₂ exposed to NO₂.

Fig. S10 Nitrogen adsorption/desorption isotherms of (a) SnSe₂-36h, (b) SnSe₂-48h and (c) SnSe₂-60h samples.

Fig. S11 EPR spectra of SnSe₂-36h and SnSe₂-60h samples.

Fig. S12 (a) XRD patterns and XPS spectra of (b) Sn 3d orbital and (c) O 1s orbital of the SnSe₂ sensor after aging 0.5 month and 5 months.

Two peaks in the Sn $3d_{5/2}$ spectrum can be seen at 486.1 and 486.8 eV, belonging to the Sn–Se bond of SnSe₂ and Sn–O bond of SnO₂, respectively.^{1,2} The peak at 532.1 eV in the O 1s spectra can be attributed to the chemically adsorbed oxygen,³ and the peak at 531.2 eV can be correlated to the Sn–O–Sn lattice oxygen.⁴ These results indicate that SnSe₂ is slightly oxidized after 5 months.

References

- [1]. M. Park, J.-Y. Kim, H. J. Son, C.-H. Lee, S. S. Jang and M. J. Ko, Nano Energy, 2016, 26, 208–215.
- [2]. T. Xu, Y. Han, L. Lin, J. Xu, Q. Fu, H. He, B. Song, Q. Gai and X. Wang, J. Alloys Compd., 2019, 790, 941–946.
- [3]. D. Gu, X. Li, Y. Zhao and J. Wang, Sens. Actuators, B, 2017, 244, 67-76.
- [4]. H. Chen, X. Pu, M. Gu, J. Zhu and L. Cheng, Ceram. Int., 2016, 42, 17717–17722.