Electronic Supplementary Information

Relationship between crystal shape and unit cell shape: crystal shape modification via co-crystallization toward SXRD-suitable crystals

Misaki Okayasu, Shoko Kikkawa, Hidemasa Hikawa and Isao Azumaya*

Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan

Table of Contents

1. Experimental

Characteristic Data of synthesized sulfonamides in this paper (1-11)

2. NMR Spectra of compound 1-11

3. Crystal structures

Table S1. Crystallographic parameters for structures of the synthesized sulfonamides in this paper (1-11)Table S2. Crystallographic parameters for structures of the co-crystals (1c-11c)

4. The difference Fourier map

5. The BFDH models of sulfonamides and co-crystals

6. References

1. Experimental

Scheme S1

Characteristic Data of synthesized sulfonamides in this paper (1-11)

Fig S1 Molecular structures of 1-11

N-(4-Phenoxyphenyl)benzenesulfonamide (1).^{s1} Yield: 479.8 mg (1.47 mmol), 73.6%. Color, Habit: colorless, prism crystals. M.p.: 109–110 °C. ¹H NMR (400 MHz, 298 K, CDCl₃) (ppm): δ 7.75 (dd, *J* = 8.5, 1.1, 2H), 7.56 (ddt, *J* = 7.4, 7.3, 1.4, 1H), 7.46 (dd, *J* = 7.5, 7.3, 2H), 7.33 (dd, *J* = 8.1, 7.9, 2H), 7.11 (ddt, *J* = 7.4, 7.3, 1.4, 1H), 7.01 (d, *J* = 8.9, 2H), 6.95 (dd, *J* = 8.6, 1.1, 2H), 6.87 (d, *J* = 9.2, 2H), 6.57 (brs,1H).

N-(4-Methoxyphenyl)-3-methylbenzenesulfonamide (2). ^{s2} Yield: 416.4 mg (1.5 mmol), 79.4%. Color, Habit: colorless, prism crystals. M.p.: 82 °C. ¹H NMR (400 MHz, 298 K, CDCl₃) (ppm): δ 7.52 (s, 1H), 7.46 (d, *J* = 7.6, 1H), 7.35–7.28 (m, 2H), 6.97 (d, *J* = 8.7, 2H), 6.76 (d, *J* = 8.9, 2H), 6.46 (brs, 1H), 3.77 (s, 3H), 2.36 (s, 3H).

4-Acetyl-*N***-(3-fluorophenyl)benzenesulfonamide (3).** Yield: 360.2 mg (1.23 mmol), 67.2%. M.p.: 95–96 °C. ¹H NMR (400 MHz, 298 K, CDCl₃) (ppm): δ 7.65–7.59 (m, 2H), 7.38–7.32 (m, 2H), 7.18 (ddd, *J* = 8.1, 8.0, 6.4, 1H), 7.07 (brs, 1H), 6.90 (dt, *J* = 10.0, 2.3, 1H), 6.84–6.76 (m, 2H), 2.37 (s, 3H). ¹³C NMR (100 MHz,

298 K, CDCl₃) (ppm): δ 163.0 (d, J_{CF} = 246.3), 139.5, 138.5, 138.1 (d, J_{CF} = 10.5), 134.2, 130.5 (d, J_{CF} = 9.6), 129.0, 127.5, 124.4, 116.3 (d, J_{CF} = 2.9), 112.0 (d, J_{CF} = 21.1), 108.2 (d, J_{CF} = 24.9), 21.3. FT–IR (KBr, cm⁻¹): 3245, 3071, 2976, 2900, 1615, 1499, 1420, 1615, 1499, 1420, 1327, 1136, 984, 913, 700, 566, 511. MS (FAB): m/z 266[M+H]⁺. Anal. Calcd. for C₁₄H₁₂FNO₃S: C, 57.33; H, 4.12; N, 4.78, Found: C, 59.03; H, 4.4; N, 5.27.

N-(3,5-Dimethylphenyl)-3-methylbenzenesulfonamide (4). Yield: 301 mg (1.09 mmol), 52%. Color, Habit: brown, prism crystals. M.p.: 126–127 °C. ¹H NMR (400 MHz, 298 K, CDCl₃) (ppm): δ 7.61 (s, 1H), 7.58 (d, *J* = 6.4, 1H), 7.34–7.29 (m, 2H), 6.74 (s, 1H), 6.68 (s, 2H), 6.61 (brs, 1H), 2.36 (s, 3H), 2.22 (s, 6H). ¹³C NMR (100 MHz, 298 K, CDCl₃) (ppm): δ 139.2, 139.1, 139.0, 136.2, 133.7, 128.8, 127.6, 127.1, 124.4, 119.2, 21.3, 21.2. FT–IR (KBr, cm⁻¹): 3230, 2917, 1598, 1478, 1401, 1323, 1217, 1151, 1095, 698, 650, 596, 505, 423. MS (FAB): *m/z* 276[M+H]⁺. Anal. Calcd. for C₁₅H₁₇NO₂S: C, 65.43; H, 6.22; N, 5.09, Found: C, 65.48; H, 6.06; N, 5.15.

N-(3,4-Dimethoxyphenyl)-4-ethylbenzenesulfonamide (5). Yield: 361 mg (1.12 mmol), 57%. Color, Habit: brown, amorphous. M.p.: 91 °C. ¹H NMR (400 MHz, 298 K, CDCl₃) (ppm): δ 7.62 (d, *J* = 8.6, 2H), 7.25 (d, *J* = 8.6, 2H), 6.71–6.66 (m, 2H), 6.52 (dd, *J* = 8.5, 2.5, 1H), 6.38 (brs, 1H), 3.83 (s, 3H), 3.77 (s, 3H), 6.28 (q, *J* = 7.6, 2H), 1.23 (t, *J* = 7.6, 3H). ¹³C NMR (100 MHz, 298 K, CDCl₃) (ppm): δ 149.9, 149.2, 147.5, 136.1, 129.2, 128.4, 127.5, 116.0, 111.1, 108.1, 56.0, 55.9, 28.8, 15.1. MS (FAB): *m/z* 321[M]⁺. Anal. Calcd. for C₁₆H₁₉NO₄S: C, 59.80; H, 5.96; N, 4.36, Found: C, 59.6; H, 5.89; N, 4.36.

N-(**3**-Ethylphenyl)-4-fluorobenzenesulfonamide (6). Yield: 420 mg (1.5 mmol), 75.2%. Color, Habit: brown, liquid. ¹H NMR (400 MHz, 298 K, CDCl₃) (ppm): δ 7.81–7.75 (m, 2H), 7.18–7.07 (m, 3H), 6.97 (d, *J* = 7.8, 1H), 6.88 (d, *J* = 8.5, 2H), 6.75 (brs, 1H), 2.56 (q, *J* = 7.6, 2H), 1.15 (t, *J* = 7.6, 3H). ¹³C NMR (100 MHz, 298 K, CDCl₃) (ppm): δ 165.2 (d, *J*_{CF} = 255.0), 145.9, 136.0, 135.0, 135.0, 130.0 (d, *J*_{CF} = 9.6), 129.3, 125.4, 121.5, 119.2, 116.2 (d, *J*_{CF} = 23.0), 28.6, 15.4. FT–IR (KBr, cm⁻¹): 3263, 2967, 1592, 1494, 1469, 1407, 1336, 1238, 1153, 1091, 838, 697, 564, 543. MS (FAB): *m*/*z* 280[M+H]⁺. HRMS (FAB): *m*/*z* [M+H]⁺ calcd for C₁₄H₁₅FNO₂S: 280.0808; found:280.0808.

N-(4-Bromophenyl)-3-chlorobenzenesulfonamide (7).^{s1} Yield: 542 mg (1.56 mmol), 82.6%. Color, Habit: colorless, prism crystals. M.p.: 103–104 °C. ¹H NMR (400 MHz, 298 K, CDCl₃) (ppm): δ 7.78 (dd, *J* = 2.0, 1.8, 1H), 7.61 (ddd, *J* = 7.8, 1.7, 1.0, 1H), 7.53 (ddd, *J* = 8.0, 2.0, 1.0, 1H), 7.42–7.37 (m, 3H), 6.97 (d, *J* = 8.8, 2H), 6.82 (brs, 1H).

3-Chloro-N-(3,4-dimethoxyphenyl)benzenesulfonamide (8). Yield: 576 mg (1.76 mmol), 87%. Color, Habit: colorless, prism crystals. M.p.: 126–127 °C. ¹H NMR (400 MHz, 298 K, CDCl₃) (ppm): δ 7.73 (dd, J = 1.7, 1.7, 1H), 7.55 (ddd, J = 7.8, 1.7, 1.0, 1H), 7.52 (ddd, J = 8.0, 2.1, 1.0, 1H), 7.37 (t, J = 8.0, 1H),

6.73–6.69 (m, 2H), 6.50 (dd, *J* = 8.5, 2.4, 1H), 6.35 (brs, 1H), 3.84 (s, 3H), 3.81 (s, 3H). ¹³C NMR (100 MHz, 298 K, CDCl₃) (ppm): δ 149.3, 147.8, 140.5, 135.2, 133.1, 130.2, 128.5, 127.4, 125.5, 116.2, 111.2, 108.3, 56.0, 56.0. FT–IR (KBr, cm⁻¹): 3225, 3006, 2356, 1513, 1343, 1269, 1231, 1172, 1022, 967, 679, 635, 586. MS (FAB): *m/z* 327[M]⁺. Anal. Calcd. for C₁₄H₁₄ClNO₄S: C, 51.30; H, 4.31; N, 4.27, Found: C, 50.82; H, 4.25; N, 4.28.

4-Bromo-*N***-(3-bromophenyl)benzenesulfonamide (9).** Yield: 467 mg (1.19 mmol), 60%. M.p.: 113–114 °C. ¹H NMR (400 MHz, 298 K, CDCl₃) (ppm): δ 7.65–7.59 (m, 4H), 7.30–7.26 (m, 2H), 7.13 (t, *J* = 8.0, 1H), 7.00 (ddd, *J* = 8.1, 2.1, 1.0, 1H), 6.50 (brs, 1H). ¹³C NMR (100 MHz, 298 K, CDCl₃) (ppm): δ 137.7, 137.3, 132.5, 130.8, 128.8, 128.7, 128.5, 124.3, 123.0, 119.8. MS (FAB): *m/z* 391[M+H]⁺. Anal. Calcd. for C₁₂H₉Br₂NO₂S: C, 36.86; H, 2.32; N, 3.58, Found: C, 36.82; H, 2.37; N, 3.6.

N-(2-Fluorophenyl)naphthalene-2-sulfonamide (10). Yield: 461.1 mg (1.53 mmol), 76.5%. M.p.: 111–112 °C. ¹H NMR (400 MHz, 298 K, CDCl₃) (ppm): δ 8.36 (d, *J* = 1.4, 1H), 7.90 (s, 1H), 7.88 (s, 1H), 7.86 (s, 1H), 7.74(dd, *J* = 8.7, 2.8, 1H), 7.67–7.56 (m, 3H), 7.11–7.00 (m, 2H), 6.91 (ddd, *J* = 10.1, 8.1, 1.8, 1H), 6.82 (brs, 1H). ¹³C NMR (100 MHz, 298 K, CDCl₃) (ppm): δ 153.9 (d, *J*_{CF} = 244.4), 136.3 (d, *J*_{CF} = 66.1), 132.0, 129.5, 129.3, 129.1, 128.9 127.9, 127.6, 126.2 (d, *J*_{CF} = 7.7), 124.8 (d, *J*_{CF} = 4.8), 124.6, 124.5, 123.2, 122.0, 115.4 (d, *J*_{CF} = 19.2). FT–IR (KBr, cm⁻¹): 3264, 3066, 1592, 1494, 1406, 1337, 1253, 1163, 901, 827, 797, 750, 680, 564, 486. MS (FAB): *m/z* 302[M+H]⁺. Anal. Calcd. for C₁₆H₁₂FNO₂S: C, 63.77; H, 4.01; N, 4.65, Found: C, 63.63; H, 3.75; N, 4.64.

N-Phenyl-4-(trifluoromethyl)benzenesulfonamide (11). ^{s3} Yield: 342.7 mg (1.14 mmol), 62.6%. M.p.: 138–139 °C. ¹H NMR (400 MHz, 298 K, CDCl₃) (ppm): δ 7.88 (d, *J* = 8.2, 2H), 7.71 (d, *J* = 8.5, 2H), 7.29 (d, *J* = 7.3, 2H), 7.18 (ddt, *J* = 7.3, 7.3, 1.1 1H), 7.07 (dd, *J* = 8.5, 1.4, 2H), 6.64 (brs, 1H). ¹³C NMR (100 MHz, 298 K, CDCl₃) (ppm): δ 142.6, 136.6, 134.9, 134.6, 129.6,127.8, 126.2 (q, *J*_{CF} = 3.8), 124.5, 122.3. FT–IR (KBr, cm⁻¹): 3254, 3095, 3047, 1935, 1594, 1406, 1329, 1165, 1065, 1017, 845, 752, 718, 694, 604, 540, 430. MS (FAB): *m/z* 302[M+H]⁺. Anal. Calcd. for C₁₃H₁₀F₃NO₂S: C, 51.83; H, 3.35; N, 4.65, Found: C, 51.75; H, 3.3; N, 4.68.

2. NMR spectra of compound 1-11.

Fig S2¹H NMR Spectra of 1

Fig S3 ¹H NMR Spectra of 2

Fig S4¹H NMR Spectra of **3**

Fig S5 13 C NMR Spectra of **3**

Fig S6¹H NMR Spectra of 4

Fig S7¹³C NMR Spectra of 4

Fig S8¹H NMR Spectra of **5**

Fig S9¹³C NMR Spectra of 5

Fig S10¹H NMR Spectra of 6

Fig S11¹³C NMR Spectra of 6

Fig S12 ¹H NMR Spectra of 7

Fig S13 ¹H NMR Spectra of 8

Fig S15¹H NMR Spectra of 9

Fig S16 ¹³C NMR Spectra of 9

Fig S17¹H NMR Spectra of 10

Fig S18¹³C NMR Spectra of 10

Fig S19¹H NMR Spectra of 11

Fig S20 ¹³C NMR Spectra of 11

3. Crystal structures

	1	2	3	4	7	8	9	10	11
Formula	$C_{18}H_{15}NO_3S$	$C_{14}H_{15}NO_3S$	C ₁₃ H ₁₂ FNO ₂ S	$C_{15}H_{17}NO_2S$	C12H9BrClNO2S	$C_{14}H_{14}C{\rm INO}_4S$	$C_{12}H_9Br_2NO_2S$	C ₁₆ H ₁₂ FNO ₂ S	$C_{13}H_{10}F_3NO_2S$
Formula weight	325.38	277.34	265.3	275.36	346.63	327.78	391.08	301.33	301.28
Crystal system	orthorhombic	orthorhombic	monoclinic	triclinic	orthorhombic	monoclinic	orthorhombic	orthorhombic	monoclinic
Space group	$P2_{1}2_{1}2_{1}$	$P 2_1 2_1 2_1$	$P 2_1/n$	$P \overline{1}$	Pbca	$P2_1/n$	$Pna 2_1$	Pbca	$Pna 2_1$
a/Å	8.79899(6)	5.3169(5)	9.1750(5)	9.0097(5)	22.990(4)	8.4505(4)	9.9580(4)	11.5492(5)	5.0813(4)
b/Å	12.17385(9)	8.3453(8)	5.9502(3)	12.3524(7)	15.918(3)	13.5240(6)	21.7896(10)	7.5883(4)	20.4639(13)
c/Å	15.22942(12)	29.723(3)	22.5000(13)	12.9152(7)	7.3032(15)	13.0184(6)	6.0999(3)	31.0045(14)	12.2504(9)
$\alpha /^{\circ}$	90	90	90	82.341(5)	90	90	90	90	90
$\beta/^{\circ}$	90	90	95.764(5)	84.612(5)	90	100.599(5)	90	90	90.757(6)
γ/°	90	90	90	84.720(5)	90	90	90	90	90
$V/\text{\AA}^3$	1631.34(2)	1318.8(2)	1222.13(12)	1413.62(14)	2672.7(9)	1462.42(12)	1323.56(10)	2717.2(2)	1273.72(16)
Ζ	4	4	4	4	8	4	4	8	4
T/K	93	93	93	93	120	93	93	93	93
μ /mm ⁻¹	1.884	0.248	0.27	0.226	3.432	0.418	6.292	0.253	0.291
^a GOF on F^2	1.089	1.012	1.073	1.016	1.063	1.036	1.086	1.029	1.092
Reflections collected (all	c 20883	10788	18973	45577	21467	23555	10151	21952	20381
Independent reflections	I>2969	2849	2185	3711	1883	2589	2590	2425	2450
Restraints/parameters	0/268	0/232	0/173	0/351	0/199	0/194	1/167	0/194	0/185
R _{int}	0.0466	0.0174	0.1129	0.1726	0.1150	0.0775	0.0451	0.0668	0.1046
${}^{\mathrm{b}}R_1$ [on $F, I \ge 2\sigma(I)$]	0.0292	0.0241	0.0510	0.0774	0.0410	0.0418	0.0259	0.0385	0.0676
$^{c}wR_{2}$ (on F^{2} , all data)	0.0745	0.063	0.1440	0.2176	0.0764	0.0969	0.0541	0.0907	0.1812
Flack parameter	0.003(6)	0.012(18)	-	-	-	-	-	-	-
T _{min}	0.709	0.910	0.094	0.553	1.000	0.396	0.409	0.749	0.290
T _{max}	0.844	0.993	0.989	0.998	1.000	0.988	0.686	0.995	0.957
Largest diff. peak/hole/e	Å0.24/-0.48	0.23/-0.30	0.56/-0.53	0.68/-0.69	0.83/-0.68	0.60/-0.45	0.41/-0.35	0.40/-0.42	0.83/-0.47

Table S1. Crystallographic parameters for structures of the synthesized sulfonamides in this paper (1–11)

^aGOF = $[\Sigma w (F_o^2 - F_c^2)^2 / (N_o - N_v)]^{1/2} (N_o; \text{ number of observations, } N_v; \text{ number of variables), } {}^bR_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|, {}^cwR_2 = [\Sigma (w (F_o^2 - F_c^2)^2) / \Sigma w (F_o^2)^2]^{1/2}.$

	1c	2c	3c	4c	5c	6c	7c	8c	9c	10c	11c
Formula	$C_{56}H_{46}N_6O_6S_2$	$C_{24}H_{23}N_3O_3S$	C23H20FN3O2S	C25H24.82N3O2S	$C_{20}H_{19}Cl_3N_2O_4S$	$\mathrm{C}_{24}\mathrm{H}_{22}\mathrm{FN}_{3}\mathrm{O}_{2}\mathrm{S}$	C17H13BrClN2O2S	C20H19Cl4N2O4	$SC_{22}H_{17}Br_2N_3O_2S$	C ₈₈ H ₆₈ F ₃ N ₁₁ O ₆	S C ₂₃ H ₁₈ F ₃ N ₃ O ₂ S
Formula weight	963.14	433.52	421.49	431.37	489.8	435.52	424.72	525.25	547.26	1528.75	457.46
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic	triclinic	triclinic	triclinic	triclinic	triclinic	monoclinic	triclinic
Space group	$P 2_1/n$	C2/c	$P 2_1 / c$	$P 2_{1}/c$	$P\bar{1}$	$P\overline{1}$	$P\overline{1}$	$P\overline{1}$	$P\overline{1}$	$P 2_{1}/c$	$P\overline{1}$
a/Å	14.8313(5)	31.8179(11)	10.2247(6)	12.6908(4)	8.56656(14)	10.0096(3)	8.4205(5)	8.56656(14)	9.9673(2)	15.7030(5)	8.24874(18)
b/Å	16.0368(7)	8.1924(3)	13.3486(6)	11.0757(3)	11.31930(19)	12.4631(6)	9.8122(5)	11.31930(19)	15.2825(5)	30.2596(8)	9.01497(18)
c/Å	20.2334(7)	17.8610(6)	15.0139(13)	15.7411(5)	12.12655(19)	17.7972(7)	11.2928(6)	12.12655(19)	15.6422(4)	17.0294(6)	29.4840(6)
α/°	90	90	90	90	85.3760(13)	80.489(4)	93.998(4)	85.3760(13)	76.2980(2)	90	82.9508(16)
β /°	91.974(3)	103.002(3)	98.168(7)	91.683(3)	87.7729(13)	73.938(3)	101.829(5)	87.7729(13)	79.7290(19)	111.871(4)	83.6918(18)
γ/°	90	90	90	90	80.6487(14)	87.660(3)	108.500(5)	80.6487(14)	71.5990(2)	90	76.4332(18)
$V/\text{\AA}^3$	4809.6(3)	4536.4(3)	2028.4(2)	2211.61(12)	1156.08(3)	2104.19(15)	856.87(9)	1156.08(3)	2182.6371(10)	7509.4(5)	2107.72(8)
Ζ	4	8	4	4	2	4	2	2	4	4	4
<i>T</i> /K	93	93	93	93	93	93	93	93	93	93	93
μ/mm^{-1}	0.17	0.172	0.194	0.173	0.514	0.189	2.695	0.631	3.845	0.171	0.206
^a GOF on F^2	1.022	1.058	1.030	1.071	1.046	1.052	1.067	1.046	1.118	1.065	1.104
Reflections collected (all data)	77886	33592	31848	34413	37159	67401	27568	37159	70946	113014	70682
Independent reflections $I > 2\sigma(I)$	7152	4641	2687	4400	4709	7272	3221	4709	7616	11645	7960
Restraints/parameters	0/639	0/284	0/275	6/314	0/288	0/563	0/221	0/288	0/549	1/1212	18/611
R _{int}	0.1335	0.0684	0.0928	0.0465	0.0432	0.1223	0.0715	0.0432	0.0732	0.0763	0.0554
${}^{b}R_{1}$ [on $F, I \ge 2\sigma(I)$]	0.057	0.0421	0.0632	0.0665	0.037	0.0951	0.0330	0.037	0.0538	0.0538	0.0484
$^{c}wR_{2}$ (on F^{2} , all data)	0.1376	0.1135	0.162	0.1841	0.1000	0.2847	0.0715	0.1	0.1609	0.1367	0.1257
Flack parameter	-	-	-	-	-	-	-	-	-	-	-
T _{min}	0.780	0.150	0.267	0.652	0.720	0.804	0.763	0.749	0.765	0.762	0.85
T _{max}	0.990	0.966	0.992	0.979	0.993	0.991	0.828	0.910	0.877	0.980	0.986
Largest diff. peak/hole/eÅ-3	0.35/-0.51	0.35/-0.60	0.30/-0.41	1.75/-0.41	0.78/-0.68	1.75/-0.74	0.48/-0.57	0.78/-0.68	1.12/-0.76	0.59/-0.62	0.37/-0.43

 Table S2. Crystallographic parameters for structures of the co-crystals (1c-11c)

^aGOF =[$\Sigma w (F_o^2 - F_c^2)^2 / (N_o - N_v)$]^{1/2} (N_o ; number of observations, N_v ; number of variables), ^b $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$, ^c $wR_2 = [\Sigma (w (F_o^2 - F_c^2)^2) / \Sigma w (F_o^2)^2]^{1/2}$.

4. The difference Fourier map

Fig S21 Difference Fourier map of the hydrogen-bonded section of the co-crystals of **1c-11c** calculated using Olex2. The blue area between the sulfonamide and **dpy** molecules indicates the location of the hydrogen.

5. The BFDH models of sulfonamides and co-crystals

Fig S22 The BFDH model calculated using Mercury for the crystals in Fig 7. In each frame, the left-hand model is the front view of the widest face, and the right-hand model is the left figure rotated 90° horizontally.

Fig S23 The BFDH model calculated using Mercury for the crystals in Fig 8. In each frame, the left-hand model is the front view of the widest face, and the right-hand model is the left figure rotated 90° horizontally.

Fig S24 The BFDH model calculated using Mercury for the crystals in Fig 12. In each frame, the left-hand model is the front view of the widest face, and the right-hand model is the left figure rotated 90° horizontally.

6. References

- A. Yamada, Y. Kazui, H. Yoshioka, A. Tanatani, S. Mori, H. Kagechika and S. Fujii, ACS Med. Chem. Lett., 2016, 7, 1028– 1033.
- S. Kikkawa, H. Masu, K. Katagiri, M. Okayasu, K. Yamaguchi, H. Danjo, M. Kawahata, M. Tominaga, Y. Sei, H. Hikawa and I. Azumaya, *Cryst. Growth Des.*, 2019, 19, 2936–2946.
- s3. N. Saito, T. Kurihara, S. Yasuda, K. Yamanaka, S. Tsuruta, T. Tanaka and Y. Inamori, *Yakugaku Zasshi*, 1968, **88**, 1610-1615; Y. Jiang, Y. You, W. Dong, Z. Peng, Y. Zhang and D. An, *J. Org. Chem.*, 2017, **82**, 5810–5818.