SUPPORTING INFORMATION

Fe₃O₄-Au-Polydopamine Hybrid Nanocapsules for Photothermal-Photodynamic

Synergistic Anti-bacterial Performance

Qunling Fang^{a,*}, Kezhu Xu^a, Qingshan Xiong^a, Yunqi Xu^b, Ailing Hui^a, Shouhu Xuan^{b,*}

 ^a School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, PR China
^b CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China

*Corresponding author: Asso. Prof. Qunling Fang E-mail: fql.good@hfut.edu.cn Tel: 86-551-62904353 Fax: 86-551-62904353

Prof. Shouhu Xuan E-mail: xuansh@ustc.edu.cn Tel: 86-551-63601702 Fax: 86-551-63606382

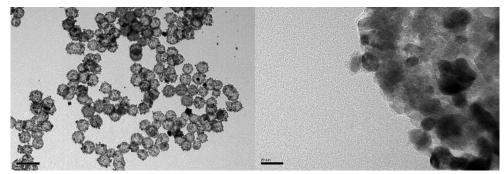


Figure SI1. TEM image of the Fe_3O_4 -Au-PDA hybrid microcapsules with different magnifications.

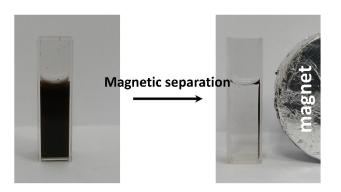


Figure SI2. Magnetic separation process of the suspension with Fe_3O_4 -Au-PDA hybrid microcapsule in water.

Table SI1. The weight percentage of the Au and Fe elements in the Fe_3O_4 hollow microspheres, $Fe_3O_4@Au/PDA$ core/shell microspheres, and Fe_3O_4 -Au-PDA hybrid microcapsules.

	Au (wt%)	Fe (wt%)
Fe ₃ O ₄		68.778
Fe ₃ O ₄ @Au/PDA core shell microsphere	14.8	43.62
Fe ₃ O ₄ -Au-PDA hybrid microcapsule	16.35	38.81