Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Symmetrical and unsymmetrical thiazole based ESIPT derivatives: Highly selective fluorescence sensing of Cu²⁺ and structure controlled reversible mechanofluorochromism

Parthasarathy Gayathri,^b Karuppaiah Kanagajothi,^a Probal Nag^c, Neethu Anand,^c Vennapusa Sivaranjana Reddy,^c Dohyun Moon,^{d*} Savarimuthu Philip Anthony,^{b*} and Vedichi Madhu^{a*}

^{*a*})Department of Applied Chemistry, Karunya Institute of Technology and Science, Coimbatore-641 114, Tamil Nadu, India.

^{b)}School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur- 613401, Tamil Nadu, India.

^{c)}Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India ^{d)}Beamline Department, Pohang Accelerator Laboratory, 80 Jigokro-127 beongil, Nam-gu,

Pohang, Gyeongbuk Korea.

S.No.	Content	Page No.
1	NMR studies	3
2	FT-IR analysis	5
3	Single crystal X-ray crystallography studies	6
4	UV and fluorescence properties	9

1. NMR studies

Fig. S2 ¹³C NMR spectrum of compound 1

Fig. S3 ¹H NMR spectrum of compound 2

Fig. S4 ¹³C NMR spectrum of compound 2

2. FT-IR analysis

Fig. S5 FT-IR spectrum of compound 1.

Fig. S6 FT-IR spectrum of compound 2.

SPA532		
$C_{24}H_{28}N_4O_2S_2$		
468.62		
220(2) K		
0.630 Å		
Triclinic		
Pī		
a = 7.1770(14) Å	<i>α</i> = 105.64(3)°.	
b = 7.4550(15) Å	$\beta = 97.57(3)^{\circ}.$	
c = 11.030(2) Å	$\gamma = 90.80(3)^{\circ}$.	
562.6(2) Å ³		
1		
1.383 Mg/m ³		
0.192 mm ⁻¹		
248		
0.101 x 0.004 x 0.003 mm ³		
1.717 to 26.499°.		
-10≤.h≤10, -10≤k≤10, -15≤l≤15		
6355		
3280 [R(int) = 0.0455]		
99.1 %		
Empirical		
1.000 and 0.766		
Full-matrix least-squares on F ²		
3280 / 0 / 166		
1.115		
R1 = 0.0943, wR2 = 0.2936		
R1 = 0.1284, wR2 = 0.3170		
0.896 and -0.791 e.Å ⁻³		
	SPA532 $C_{24}H_{28}N_4O_2S_2$ 468.62 220(2) K 0.630 Å Triclinic $P\overline{r}$ a = 7.1770(14) Å b = 7.4550(15) Å c = 11.030(2) Å 562.6(2) Å ³ 1 1.383 Mg/m ³ 0.192 mm ⁻¹ 248 0.101 x 0.004 x 0.003 mm 1.717 to 26.499°. -10 \leq .h \leq 10, -10 \leq k \leq 10, -15 6355 3280 [R(int) = 0.0455] 99.1 % Empirical 1.000 and 0.766 Full-matrix least-squares 3280 / 0 / 166 1.115 R1 = 0.0943, wR2 = 0.292 R1 = 0.1284, wR2 = 0.31 0.896 and -0.791 e.Å ⁻³	

3. Single crystal X-ray crystallography studies

 Table S1. Crystal data and structure refinement for 1 (CCDC 2073010)

Identification code	SPA447		
Empirical formula	$C_{24}H_{30}N_4O_2S$		
Formula weight	438.58		
Temperature	220(2) K		
Wavelength	0.610 Å		
Crystal system	Monoclinic		
Space group	$P2_I$		
Unit cell dimensions	a = 6.6330(13) Å	<i>α</i> = 90°.	
	b = 8.5300(17) Å	β= 94.24(3)°.	
	c = 19.929(4) Å	$\gamma = 90^{\circ}.$	
Volume	1124.5(4) Å ³		
Z	2		
Density (calculated)	1.295 Mg/m ³		
Absorption coefficient	0.117 mm ⁻¹		
F(000)	468		
Crystal size	0.135 x 0.094 x 0.084 mm ³		
Theta range for data collection	1.759 to 25.000°.		
Index ranges	-9≤h≤9, -11≤k≤11, -27≤l≤27		
Reflections collected	11469		
Independent reflections	6002 [R(int) = 0.0420]		
Completeness to theta = 21.469°	97.6 %		
Absorption correction	Empirical		
Max. and min. transmission	1.000 and 0.849		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	6002 / 1 / 286		
Goodness-of-fit on F ²	1.051		
Final R indices [I>2sigma(I)]	R1 = 0.0545, wR2 = 0.1556		
R indices (all data)	R1 = 0.0583, wR2 = 0.1585		
Absolute structure parameter	0.06(3)		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.982 and -0.459 e.Å ⁻³		

 Table S2. Crystal data and structure refinement for 2 (CCDC 2073011)

Fig. S7 Orientation of terminal diethyl moiety in 2.

Fig. S8 Intermolecular C–H···O and C–H···S hydrogen bonding interactions in **2**.

4. UV-Visible and fluorescence studies

Fig. S9 Fluorescence spectra of 1. Original crystals (black), after slight breaking (red), after crushing (blue) and after heating (purple).

Fig. S10 Fluorescence spectra of **2**. Original crystals (black), after slight breaking (red), after crushing (blue) and after heating (purple).

Fig. S11 Fluorescence spectra of 1 with different solvents (10⁻³ M).

Fig. S12 Absorption spectra of 1 with different solvents (10^{-3} M).

Fig. S13 (a) Digital images (b) fluorescence and (c) absorption spectra of 2 with different metal ions. $(10^{-3} \text{ M of } 2; 10^{-3} \text{ M of metal ions}).$

Fig. S14 Limit of detection (LOD) calculation

Fig. S15 Cu²⁺ concentration dependent absorption changes of 1 in CH₃CN.

Fig. S16 Jobs plot for 1.

Fig. S17 The Cu^{2+} ions concentration dependent fluorescence studies of 2

Fig. S18 Limit of detection (LOD) calculation.

Fig. S19 Jobs plot for 2.

Fig. S20 Fluorescence spectra of 2 with 10⁻⁴ M concentration of Al³⁺

Fig. S21 Interference studies of **2** in presence of other metal cation (a) fluorescence and (b) absorption spectra.