Supporting Information

Selective Crystallization of Four Bis(phthalocyaninato)lanthanoid(III) Polymorphs Maegan Dailey and Claire Besson

Figure S1. Crystallographic parameters for the LaPc2 polymorphspagFigure S1. Thermal ellipsoid plot for the LaPc2 α-phasepagFigure S2. Thermal ellipsoid plot for the LaPc2·CH2Cl2 solvate phasepag	ge 3 ge 3 ge 3
Figure S3. Thermal ellipsoid plot for the PrPc2 δ-phasepagFigure S4. Thermal ellipsoid plot for the PrPc2 CH2Cl2 solvate phasepag	ge 4 ge 4 ge 4
Figure S5. Purification of NdPc ₂	re 5
Fable S3. Crystallographic parameters for the NdPc ₂ polymorphs $pactors parameters for the NdPc2 polymorphs pactors parameters for the NdPc2 polymorphs pactors parameters for the NdPc2 polymorphs parameters for the NdPc2 polymorphs pactors parameters for the NdPc2 polymorphs parameters parameters for the NdPc2 polymorphy parameters par$	50 J
Figure S6. Skew angle calculation example	500 re 7
Fable S4. Geometric parameters of the different NdPc ₂ polymorphs	уе 7
Figure S7. Reflection data showing the lack of a supercell for NdPc ₂	ze 8
Figure S8. Thermal ellipsoid plot for the NdPc ₂ α -phase	ge 9
Figure S9. Hirshfeld surface for the NdPc ₂ β -phase	ge 9
Figure S10. Thermal ellipsoid plot for the NdPc ₂ γ -phase	e 10
Figure S11. Hirshfeld surface for the NdPc ₂ γ -phase	e 10
Figure S12. Redox titration for the NdPc ₂ γ -phase	e 11
Figure S13. Thermal ellipsoid plot for the NdPc ₂ δ -phase	e 11
Figure S14. Hirshfeld surface for the NdPc ₂ δ-phasepage	e 12
Figure S15. Redox titration for the NdPc ₂ δ-phasepage	e 12
Figure S16. Thermal ellipsoid plot for the NdPc ₂ ·CH ₂ Cl ₂ solvate phasepage	e 13
Figure S17. Hirshfeld surface for the NdPc ₂ ·CH ₂ Cl ₂ solvate phasepage	e 13
Figure S18. Redox titration for the NdPc ₂ ·CH ₂ Cl ₂ solvate phasepage	e 14
Figure S19. Energy as a function of skew angle for NdPc ₂ page	e 15
Fable S5. Crystallographic parameters for the SmPc ₂ polymorphs	e 16
Figure S20. Thermal ellipsoid plot for the SmPc ₂ y-phase	e 16
Figure S21. Thermal ellipsoid plot for the SmPc ₂ δ -phase	e 17
Figure S22. Thermal ellipsoid plot for the $SmPc_2 \cdot CH_2Cl_2$ solvate phase	e 17
Figure S23. Energy as a function of skew angle for SmPc ₂	e 18
Figure S24. Redox titration for the $SmPc_2 \cdot CH_2Cl_2$ solvate phase	e 18
Fable S6. Crystallographic parameters for GdPc2 polymorphs	e 19
Figure S25. Thermal ellipsoid plot for the GdPc ₂ γ -phase	e 19
Figure S26. Thermal ellipsoid plot for the GdPc ₂ δ -phase	e 20
Figure S27. Thermal ellipsoid plot for the $GdPc_2 \cdot CH_2Cl_2$ solvate phase	e 20
Figure S28. Energy as a function of skew angle for GdPc ₂ page	e 21

Table S7. Crystallographic parameters for the TbPc2 polymorphs
Figure S29. Thermal ellipsoid plot for the TbPc ₂ γ-phasepage 22
Figure S30. Thermal ellipsoid plot for the TbPc ₂ δ-phasepage 23
Figure S31. Thermal ellipsoid plot for the TbPc ₂ ·CH ₂ Cl ₂ solvate phasepage 23
Table S8. Crystallographic parameters for the DyPc2 polymorphs
Figure S32. Thermal ellipsoid plot for the DyPc ₂ α -phase
Figure S33. Thermal ellipsoid plot for the $DyPc_2 \gamma$ -phase
Figure S34. Thermal ellipsoid plot for the $DyPc_2 \cdot CH_2Cl_2$ solvate phasepage 25
Table S9. Crystallographic parameters for the ErPc2 CH2Cl2 solvate phase
Figure S35. Thermal ellipsoid plot for the ErPc ₂ ·CH ₂ Cl ₂ solvate phasepage 26
Table S10. Crystallographic parameters for the YbPc2 polymorphspage 27
Figure S36. Thermal ellipsoid plot for the YbPc ₂ γ-phasepage 27
Figure S37. Thermal ellipsoid plot for the YbPc ₂ ·CH ₂ Cl ₂ solvate phasepage 27
Table S11. Bond lengths for α-LnPc2page 28
Table S12. Bond lengths for γ -LnPc ₂
Table S13. Bond lengths for δ -LnPc ₂
Table S14. Bond lengths for $LnPc_2 \cdot CH_2Cl_2$ solvate phase

	2 7 1	
	α-Phase ^a	CH ₂ Cl ₂ Solvate Phase
Chemical Formula	$C_{64}H_{32}N_{16}La$	$C_{64}H_{32}N_{16}La{\cdot}CH_2Cl_2$
Crystal System	Tetragonal	Orthorhombic
Z	2	4
Space Group	P4/nnc	Pnma
a (Å)	19.9227(6)	28.0409(9)
b (Å)	19.9227(6)	22.9440(7)
c (Å)	6.3925(4)	7.8783(2)
α (°)	90.0	90.0
β (°)	90.0	90.0
γ (°)	90.0	90.0
V (Å ³)	2537.27	5068.67
Density (g/cm ³)	1.524	1.637
R-factor (%)	8.03	3.01
CCDC Number	2096854	2096857

Table S1. Crystallographic Parameters for the LaPc₂ Polymorphs

^a There is a small residual electronic density peak at coordinates ($\frac{1}{4}$, $\frac{1}{4}$, $\frac{3}{4}$), mirroring the La center with respect to the phthalocyanine ring. This suggests some La disorder between two positions shifted along the LaPc₂ stack by the Pc-Pc distance, as was observed in the neodymium case. Attempts to refine this model, however, converged to occupancy factors of less than 1% for the additional La site with no significant improvement of the R-factors, and where thus abandoned.

Figure S1. Thermal ellipsoid plot for the LaPc₂ α -phase. Ellipsoids shown at 50% probability (La: light blue, C: grey, N: blue, H: white).

Figure S2. Thermal ellipsoid plot for the $LaPc_2 \cdot CH_2Cl_2$ phase. Ellipsoids shown at 50% probablilty (La: light blue, C: grey, N: blue, CI: bright green, H: white).

	δ-Phase	CH ₂ Cl ₂ Solvate Phase
Chemical Formula	$C_{64}H_{32}N_{16}Pr$	$C_{64}H_{32}N_{16}Pr\cdot CH_2Cl_2$
Crystal System	Monoclinic	Orthorhombic
Z	4	4
Space Group	C2/c	Pnma
a (Å)	28.106(3)	28.1128(16)
b (Å)	14.1593(10)	22.9663(14)
c (Å)	13.1975(8)	7.8883(5)
α (°)	90.0	90.0
β (°)	115.551(4)	90.0
γ (°)	90.0	90.0
V (Å ³)	4738.45	5093.06
Density (g/cm ³)	1.634	1.631
R-factor (%)	2.68	2.94
CCDC Number	2096858	2096859

Table S2. Crystallographic Parameters for PrPc₂ Polymorphs

Figure S3. Thermal ellipsoid plot for the $PrPc_2$ δ -phase. Ellipsoids shown at 50% probablilty (Pr: yellow-green, C: grey, N: blue, H: white).

Figure S4. Thermal ellipsoid plot for the PrPc₂.CH₂Cl₂ solvate phase. Ellipsoids shown at 50% probability (Pr: yellow-green, C: grey, N: blue, Cl: bright green, H: white).

Figure S5. a) Purification of $NdPc_2$ and $NdPc_2^-$ by column chromatography showing blue $(NdPc_2^-)$ and green $(NdPc_2)$ bands b) Resulting fractions.

	α-Phase ^a	β-Phase ^b	γ-Phase [°]	δ-Phase	CH ₂ Cl ₂ Solvate Phase
Chemical Formula	C ₆₄ H ₃₂ N ₁₆ Nd	$C_{64}H_{32}N_{16}Nd$	C ₆₄ H ₃₂ N ₁₆ Nd	$C_{64}H_{32}N_{16}Nd$	$C_{64}H_{32}N_{16}Nd\cdot CH_2Cl_2$
Crystal System	Tetragonal	Monoclinic	Orthorhombic	Monoclinic	Orthorhombic
Z	2	4	4	4	4
Space Group	P4/nnc	C2/c	P212121	C2/c	Pnma
a (Å)	19.937(5)	19.010	8.852(2)	28.103(3)	28.085(16)
b (Å)	19.937(5)	19.066	10.604(2)	14.175(13)	22.964(13)
c (Å)	6.420(16)	15.538	50.844(12)	13.185(12)	7.890(4)
α (°)	90.0	90.0	90.0	90.0	90.0
β (°)	90.0	116.1	90.0	115.596(2)	90.0
γ (°)	90.0	90.0	90.0	90.0	90.0
V (Å ³)	2551.93	5057.39	4772.5(19)	4737.0(8)	5088.3(5)
Density (g/cm ³)	1.522	1.536	1.627	1.640	1.637
R-factor (%)	6.47	5.2	3.07	3.55	2.66
CCDC Number	2016007	N/A	2016008	2016006	2016009

Table S3. Crystallographic parameters for the NdPc₂ polymorphs

a. Platon (Spek, A. L. *Acta Cryst.*, **2009**, D65, 148-155) was used to transform the space group from P4/nnc to the suggested P4/mcc, which includes an additional mirror through the phthalocyanine ring, and therefore imposes a 50:50 disorder between the two Nd sites. Refinement of the structure in the new space group did not yield any appreciable improvement of the model or R-factors (P4/nnc: R_1 =6.47%, wR_2 =18.00%; P4/mcc: R_1 =5.78%, wR_2 =22.55%). Given that the Nd disorder refines away from a 50:50 ratio in the P4/nnc space group, and that the curvature observed for the phthalocyanine rings (convexity toward the major Nd site) is consistent with the structure of the NdPc₂ molecules in all other phases, P4/nnc was determined to be the correct space group. The OMIT command was used to omit reflections affected by the beam stop.

b. Parameters taken from the following reference: Darovskikh, A.N.; Tsytsenko, A.K.; Frank-Kamenetskaya, O.V.; Fundamenskii, V.S.; Moskalev, P.N. Polymorphism of Diphthalocyanine-Neodymium. Molecular and Crystal Structure of the β -Phase. *Sov. Phys. Crystallogr.*, **1984**, *24*, 273-276.

c. The OMIT command was used to omit reflections affected by the beam stop.

Figure S6. An example of how the skew angle is calculated using the CH_2Cl_2 solvate phase. Centroids are defined by the four isoindole nitrogens on each Pc ligand (Nd: green, N: blue, C: grey, Cl: bright green). Hydrogens are omitted for clarity.

	α-Phase	β-Phase	γ-Phase	δ-Phase	CH ₂ Cl ₂ Solvate Phase
Skew angle (°)	40.9	39.0	40.8	42.7	45
Shortest Nd-Nd Distance (Å)	6.4202(16)	8.458	8.852(2)	7.0782(6)	7.8897(4)
Slip angle (°)	90	49.5	47.3	67	55.3
Vertical intermolecular Pc-Pc Distance (Å)	3.45	3.45	3.57	3.57	3.54

Table S4. Geometric parameters of the different NdPc₂ polymorphs.

Figure S7. Reflection data for the NdPc₂ α -phase showing the lack of a supercell or superperiod in the directions a) 0kl b) h0l c) hk0.

Figure S8. Thermal ellipsoid plot for the NdPc₂ α -phase. Ellipsoids shown at 50% probability (Nd: green, C: grey, N: blue, H: white).

Figure S9. Hirshfeld plot (a) and corresponding fingerprint plot (b) for the NdPc₂ β -phase.

Figure S10. Thermal ellipsoid plot for the NdPc₂ γ -phase. Ellipsoids shown at a 50% probability (Nd: green, N: blue, C: grey, H: white).

Figure S11. The Hirshfeld surface (a) and corresponding fingerprint plot (b) for the NdPc₂ γ -phase.

Wavelength (nm)

Figure S12. Redox titration of NdPc₂ γ -phase crystals, re-dissolved in CH₂Cl₂.

Figure S13. Thermal ellipsoid plot for the NdPc₂ δ -phase. Ellipsoids shown at a 50% probability (Nd: green, N: blue, C: grey, H: white).

Figure S14: The Hirshfeld surface (a) and corresponding fingerprint plot (b) for the NdPc₂ δ -phase.

Figure S15. Redox titration of NdPc₂ δ-phase crystals, re-dissolved in CH₂Cl₂.

Figure S16. Thermal ellipsoid plot for the NdPc₂ CH₂Cl₂ solvate phase. Ellipsoids shown at a 50% probability (Nd: green, N: blue, C: grey, H: white).

Figure S17. The Hirshfeld surface (a) and corresponding fingerprint plot (b) for the $NdPc_2 CH_2Cl_2$ solvate phase.

Figure S18. Redox titration of NdPc₂·CH₂Cl₂ solvate phase crystals, re-dissolved in CH₂Cl₂.

Figure S19. Influence of the skew angle of a NdPc₂ molecule on the energies of its quintet (ferromagnetic coupling between the Nd³⁺ center and the phthalocyanine radical, \times) and triplet states (antiferromagnetic coupling, +).

	γ-Phase	δ-Phase	CH ₂ Cl ₂ Solvate Phase
Chemical Formula	$C_{64}H_{32}N_{16}Sm$	$C_{64}H_{32}N_{16}Sm$	$C_{64}H_{32}N_{16}Sm{\cdot}CH_2Cl_2$
Crystal System	Orthorhombic	Monoclinic	Orthorhombic
Z	4	4	4
Space Group	$P2_{1}2_{1}2_{1}$	C2/c	Pnma
a (Å)	8.8201(2)	28.1112(14)	28.1354(6)
b (Å)	10.6092(3)	14.2031(12)	22.9450(6)
c (Å)	50.7567(11)	13.1654(5)	7.8933(2)
α (°)	90.0	90.0	90.0
β (°)	90.0	115.574(2)	90.0
γ (°)	90.0	90.0	90.0
V (Å ³)	4749.52	4741.51	5095.65
Density (g/cm ³)	1.644	1.647	1.643
R-factor (%)	3.8	1.73	3.1
CCDC Number	2096866	2096862	2096863

Table S5. Crystallographic Parameters for the SmPc₂ Polymorphs

Figure S20. Thermal ellipsoid plot for the $SmPc_2$ γ -phase. Ellipsoids shown at 50% probablilty (Sm: teal, C: grey, N: blue, H: white).

Figure S21. Thermal ellipsoid plot for the SmPc₂ δ -phase. Ellipsoids shown at 50% probability (Sm: teal, C: grey, N: blue, H: white).

Figure S22. Thermal ellipsoid plot for the SmPc₂·CH₂Cl₂ phase. Ellipsoids shown at 50% probablilty (Sm: teal, C: grey, N: blue, H: white).

Figure S23. Influence of the skew angle of a SmPc_2 molecule on the energies of its septet (ferromagnetic coupling between the Sm^{3+} center and the phthalocyanine radical, ×) and quintet states (antiferromagnetic coupling, +).

Figure S24. Redox titration of SmPc₂·CH₂Cl₂ solvate phase crystals, re-dissolved in CH₂Cl₂.

	γ-Phase ^a	δ-Phase	CH ₂ Cl ₂ Solvate Phase
Chemical Formula	$C_{64}H_{32}N_{16}Gd$	$C_{64}H_{32}N_{16}Gd$	$C_{64}H_{32}N_{16}Gd\cdot CH_2Cl_2$
Crystal System	Orthorhombic	Monoclinic	Orthorhombic
Z	4	4	4
Space Group	$P2_{1}2_{1}2_{1}$	C2/c	Pnma
a (Å)	8.8412(14)	28.125(3)	28.356(3)
b (Å)	10.5892(15)	14.1663(14)	22.882(3)
c (Å)	50.762(8)	13.1416(14)	8.0460(10)
α (°)	90.0	90.0	90.0
β (°)	90.0	115.688(4)	90.0
γ (°)	90.0	90.0	90.0
V (Å ³)	4752.4	4718.49	5220.58
Density (g/cm ³)	1.653	1.664	1.612
R-factor (%)	5.38	5.12	4.45
CCDC Number	2096860	2096855	2096853

Table S6. Crystallographic Parameters for GdPc₂ Polymorphs

^aThe γ -phase crystals are often twinned, resulting in residual electron density along the Gd-Gd directions.

Figure S25. Thermal ellipsoid plot for the GdPc₂ γ -phase. Ellipsoids shown at 50% probability (Gd: blue-green, C: grey, N: blue, H: white).

Figure S26. Thermal ellipsoid plot for the GdPc₂ δ -phase. Ellipsoids shown at 50% probablilty (Gd: blue-green, C: grey, N: blue, H: white).

Figure S27. Thermal ellipsoid plot for the $GdPc_2 \cdot CH_2Cl_2$ phase. Ellipsoids shown at 50% probablilty (Gd: blue-green, C: grey, N: blue, Cl: bright green, H: white).

Figure S28. Influence of the skew angle of a $GdPc_2$ molecule on the energies of its nonet (ferromagnetic coupling between the Gd^{3+} center and the phthalocyanine radical, ×) and septet states (antiferromagnetic coupling, +).

	γ-Phase ^a	δ-Phase	CH ₂ Cl ₂ Solvate Phase
Chemical Formula	$C_{64}H_{32}N_{16}Tb$	$C_{64}H_{32}N_{16}Tb$	$C_{64}H_{32}N_{16}Tb\!\cdot\!CH_2Cl_2$
Crystal System	Orthorhombic	Monoclinic	Orthorhombic
Z	4	4	4
Space Group	$P2_{1}2_{1}2_{1}$	C2/c	Pnma
a (Å)	8.8136(6)	28.086(3)	28.0516(7)
b (Å)	10.5756(7)	14.160(2)	22.9642(8)
c (Å)	50.713(3)	13.1416(14)	7.8827(2)
α (°)	90.0	90.0	90.0
β (°)	90.0	115.708(10)	90.0
γ (°)	90.0	90.0	90.0
V (Å ³)	4726.91	4709.06	5077.9
Density (g/cm ³)	1.664	1.670	1.660
R-factor (%)	5.01	4.62	2.39
CCDC Number	2108638	2096861	2096864

Table S7. Crystallographic Parameters for TbPc₂ Polymorphs

^aThe γ -phase crystals are often twinned, resulting in residual electron density along the Tb-Tb directions.

Figure S29. Thermal ellipsoid plot for the TbPc₂ γ -phase. Ellipsoids shown at 50% probablilty (Tb: blue-green, C: grey, N: blue, H: white).

Figure S30. Thermal ellipsoid plot for the TbPc₂ δ -phase. Ellipsoids shown at 50% probablilty (Tb: blue-green, C: grey, N: blue, H: white).

Figure S31. Thermal ellipsoid plot for the $TbPc_2 \cdot CH_2Cl_2$ phase. Ellipsoids shown at 50% probablilty (Tb: blue-green, C: grey, N: blue, Cl: bright green, H: white).

	α-Phase ^a	γ-Phase	CH ₂ Cl ₂ Solvate Phase
Chemical Formula	$C_{64}H_{32}N_{16}Dy$	C ₆₄ H ₃₂ N ₁₆ Dy	$C_{64}H_{32}N_6Dy \cdot CH_2Cl_2$
Crystal System	Tetragonal	Orthorhombic	Orthorhombic
Z	2	4	4
Space Group	P4/nnc	$P2_{1}2_{1}2_{1}$	Pnma
a (Å)	19.548(4)	8.8171(11)	28.030(3)
b (Å)	19.548(4)	10.5671(12)	22.902(3)
c (Å)	6.477(2)	50.658(6)	7.8972(8)
α (°)	90.0	90.0	90.0
β (°)	90.0	90.0	90.0
γ (°)	90.0	90.0	90.0
V (Å ³)	2475.02	4718.93	5069.55
Density (g/cm ³)	1.584	1.672	1.667
R-factor (%)	7.00	4.57	5.87
CCDC Number	2096850	2096851	2096852

Table S8. Crystallographic Parameters for DyPc₂ Polymorphs

^a There is a small residual electronic density peak at coordinates ($\frac{1}{4}$, $\frac{1}{4}$, $\frac{3}{4}$), mirroring the Dy center with respect to the phthalocyanine ring. This suggests some Dy disorder between two positions shifted along the DyPc₂ stack by the Pc-Pc distance, as was observed in the neodymium case. Attempts to refine this model, however, converged to occupancy factors of less than 1% for the additional Dy site with no significant improvement of the R-factors, and where thus abandoned.

Figure S32. Thermal ellipsoid plot for the DyPc₂ α -phase. Ellipsoids shown at 50% probablilty (Dy: blue-green, C: grey, N: blue, H: white).

Figure S33. Thermal ellipsoid plot for the DyPc₂ γ -phase. Ellipsoids shown at 50% probablilty (Dy: blue-green, C: grey, N: blue, H: white).

Figure S34. Thermal ellipsoid plot for the $DyPc_2 \cdot CH_2Cl_2$ phase. Ellipsoids shown at 50% probablilty (Dy: blue-green, C: grey, N: blue, Cl: bright green, H: white).

	CH_2Cl_2 ·Phase
Chemical Formula	$C_{64}H_{32}N_{16}Er{\cdot}CH_2Cl_2$
Crystal System	Orthorhombic
Z	4
Space Group	Pnma
a (Å)	28.016(3)
b (Å)	22.942(3)
c (Å)	7.8678(7)
α (°)	90.0
β (°)	90.0
γ (°)	90.0
V (Å ³)	5056.97
Density (g/cm ³)	1.678
R-factor (%)	4.6
CCDC Number	2096856

 Table S9. Crystallographic Parameters for ErPc2

Figure S35. Thermal ellipsoid plot for the $ErPc_2 \cdot CH_2Cl_2$ phase. Ellipsoids shown at 50% probablilty (Er: mint green, C: grey, N: blue, Cl: bright green, H: white).

	γ-Phase	CH ₂ Cl ₂ Solvate Phase
Chemical Formula	$C_{64}H_{32}N_{16}Yb$	$C_{64}H_{32}N_{16}Yb\cdot CH_2Cl_2$
Crystal System	Orthorhombic	Orthorhombic
Z	4	4
Space Group	$P2_{1}2_{1}2_{1}$	Pnma
a (Å)	8.7901(6)	27.955(6)
b (Å)	10.5965(12)	22.921(5)
c (Å)	50.568(4)	7.8802(12)
α (°)	90.0	90.0
β (°)	90.0	90.0
γ (°)	90.0	90.0
V (Å ³)	4710.12	5049.29
Density (g/cm ³)	1.690	1.688
R-factor (%)	4.1	4.97
CCDC Number	2096867	2096865

Table S10. Crystallographic Parameters for YbPc₂ Polymorphs

Figure S36. Thermal ellipsoid plot for the YbPc₂ γ -phase. Ellipsoids shown at 50% probablilty (Yb: green, C: grey, N: blue, H: white)

Figure S37. Thermal ellipsoid plot for the YbPc₂·CH₂Cl₂ phase. Ellipsoids shown at 50% probablilty (La: green, C: grey, N: blue, Cl: bright green, H: white).

LaPc ₂		Nd	Pc_2	DyPc ₂			
Atom 1 – Atom 2	Bond Length (Å)	Atom 1 – Atom 2	Bond Length (Å)	Atom 1 – Atom 2	Bond Length (Å)		
La(1) - N(2)	2.421	Nd(1) - N(2)	2.467	Dy(1) - N(2)	2.408		
C(1) - C(2)	1.471(1)	Nd(2) - N(2)	2.615	C(1) - C(2)	1.48(1)		
C(1) - N(1)	1.32(1)	C(1) - C(4)	1.46(1)	C(1) - N(1)	1.31(1)		
C(1) - N(2)	1.37(1)	C(1) - N(1)	1.33(1)	C(1) - N(2)	1.371(9)		
C(2) - C(3)	1.371(1)	C(1) - N(2)	1.38(1)	C(2) - C(3)	1.38(1)		
C(2) - C(7)	1.40(1)	C(2) - C(3)	1.45(1)	C(2) - C(7)	1.39(1)		
C(3) - C(4)	1.38(2)	C(2) - N(1)	1.34(1)	C(3) - C(4)	1.38(1)		
C(3) - H(3)	0.95	C(2) - N(2)	1.37(1)	C(3) - H(3)	0.931		
C(4) - C(5)	1.40(2)	C(3) - C(4)	1.40(1)	C(4) - C(5)	1.40(1)		
C(4) - H(4)	0.95	C(3) - C(8)	1.41(1)	C(4) - H(4)	0.93		
C(5) - C(6)	1.40(1)	C(4) - C(5)	1.38(1)	C(5) - C(6)	1.38(1)		
C(5) - H(5)	0.95	C(5) - C(6)	1.40(1)	C(5) - H(5)	0.93		
C(6) - C(7)	1.38(1)	C(5) - H(5)	0.93	C(6) - C(7)	1.40(1)		
C(6) - H(6)	0.95	C(6) - H(6)	0.93	C(6) - H(6)	0.93		
C(7) - C(8)	1.46(1)	C(6) - C(7)	1.38(2)	C(7) - C(8)	1.46(1)		
C(8) - N(1)	1.34(1)	C(7) - C(8)	1.40(1)	C(8) - N(1)	1.349(9)		
C(8) - N(2)	1.37(1)	C(7) - H(7)	0.93	C(8) - N(2)	1.36(1)		
		C(8) - H(8)	0.93				

Table S11. Bond Lengths for α -LnPc₂

Nd	lPc ₂	Sm	$1Pc_2$	Gd	Pc_2	Tb	Pc ₂	DyPc ₂		YbPc ₂	
Atom 1 – Atom 2	Bond Length (Å)										
Nd(1) - N(2)	2.459(3)	Sm(1) - N(1)	2.451(3)	Gd(1) - N(1)	2.439(7)	Tb(1) - N(1)	2.406(5)	Dy(1) - N(1)	2.420(5)	Yb(1) - N(1)	2.361(5)
Nd(1) - N(4)	2.458(4)	Sm(1) - N(3)	2.438(3)	Gd(1) - N(3)	2.424(7)	Tb(1) - N(3)	2.409(5)	Dy(1) - N(3)	2.412(4)	Yb(1) - N(3)	2.382(5)
Nd(1) - N(6)	2.474(4)	Sm(1) - N(5)	2.444(3)	Gd(1) - N(5)	2.414(7)	Tb(1) - N(5)	2.397(5)	Dy(1) - N(5)	2.403(4)	Yb(1) - N(5)	2.392(5)
Nd(1) - N(8)	2.470(3)	Sm(1) - N(7)	2.428(4)	Gd(1) - N(7)	2.440(7)	Tb(1) - N(7)	2.415(5)	Dy(1) - N(7)	2.395(4)	Yb(1) - N(7)	2.362(5)
Nd(1) - N(10)	2.476(3)	Sm(1) - N(9)	2.439(3)	Gd(1) - N(9)	2.433(8)	Tb(1) - N(9)	2.401(5)	Dy(1) - N(9)	2.402(5)	Yb(1) - N(9)	2.386(5)
Nd(1) - N(12)	2.462(3)	Sm(1) - N(11)	2.431(3)	Gd(1) - N(11)	2.420(8)	Tb(1) - N(11)	2.426(5)	Dy(1) - N(11)	2.398(4)	Yb(1) - N(11)	2.368(5)
Nd(1) - N(14)	2.470(4)	Sm(1) - N(13)	2.454(3)	Gd(1) - N(13)	2.444(7)	Tb(1) - N(13)	2.418(4)	Dy(1) - N(13)	2.397(4)	Yb(1) - N(13)	2.376(5)
Nd(1) - N(16)	2.458(4)	Sm(1) - N(15)	2.448(3)	Gd(1) - N(15)	2.417(7)	Tb(1) - N(15)	2.403(4)	Dy(1) - N(15)	2.411(4)	Yb(1) - N(15)	2.375(5)
C(1) - C(2)	1.466(6)	C(1) - C(2)	1.470(6)	C(1) - C(2)	1.47(1)	C(1) - C(2)	1.475(8)	C(1) - C(2)	1.485(8)	C(1) - C(2)	1.455(8)
C(1) - N(1)	1.341(5)	C(1) - N(1)	1.369(5)	C(1) - N(1)	1.37(1)	C(1) - N(1)	1.370(8)	C(1) - N(1)	1.376(7)	C(1) - N(1)	1.364(7)
C(1) - N(2)	1.368(5)	C(1) - N(8)	1.338(5)	C(1) - N(8)	1.33(1)	C(1) - N(8)	1.335(8)	C(1) - N(8)	1.328(7)	C(1) - N(8)	1.347(8)
C(2) - C(3)	1.384(6)	C(2) - C(3)	1.389(6)	C(2) - C(3)	1.38(1)	C(2) - C(3)	1.365(8)	C(2) - C(3)	1.385(8)	C(2) - C(3)	1.386(8)
C(2) - C(7)	1.407(6)	C(2) - C(7)	1.394(6)	C(2) - C(7)	1.41(1)	C(2) - C(7)	1.397(8)	C(2) - C(7)	1.388(8)	C(2) - C(7)	1.404(9)
C(3) - C(4)	1.395(6)	C(3) - C(4)	1.396(6)	C(3) - C(4)	1.38(1)	C(3) - C(4)	1.396(9)	C(3) - C(4)	1.404(8)	C(3) - C(4)	1.40(1)
C(3) - H(3)	0.93	C(3) - H(3)	0.95								
C(4) - C(5)	1.392(7)	C(4) - C(5)	1.379(6)	C(4) - C(5)	1.40(1)	C(4) - C(5)	1.380(1)	C(4) - C(5)	1.365(9)	C(4) - C(5)	1.40(1)
C(4) - H(4)	0.93	C(4) - H(4)	0.95								
C(5) - C(6)	1.395(7)	C(5) - C(6)	1.399(6)	C(5) - C(6)	1.39(1)	C(5) - C(6)	1.388(9)	C(5) - C(6)	1.395(9)	C(5) - C(6)	1.398(9)
C(5) - H(5)	0.93	C(5) - H(5)	0.95								

Table S12. Bond Lengths for γ -LnPc₂

C(6) - C(7)	1.379(5)	C(6) - C(7)	1.390(6)	C(6) - C(7)	1.39(1)	C(6) - C(7)	1.390(8)	C(6) - C(7)	1.389(9)	C(6) - C(7)	1.389(9)
C(6) - H(6)	0.93	C(6) - H(6)	0.95	C(6) - H(6)	0.95	C(6) - H(6)	0.95	C(6) - H(6)	0.95	C(6) - H(6)	0.95
C(7) - C(8)	1.460(6)	C(7) - C(8)	1.474(5)	C(7) - C(8)	1.47(1)	C(7) - C(8)	1.467(8)	C(7) - C(8)	1.464(8)	C(7) - C(8)	1.470(8)
C(8) - N(2)	1.370(5)	C(8) - N(1)	1.371(5)	C(8) - N(1)	1.38(1)	C(8) - N(1)	1.366(8)	C(8) - N(1)	1.363(7)	C(8) - N(1)	1.378(8)
C(8) - N(3)	1.339(5)	C(8) - N(2)	1.332(5)	C(8) - N(2)	1.31(1)	C(8) - N(2)	1.336(8)	C(8) - N(2)	1.333(7)	C(8) - N(2)	1.328(8)
C(9) - C(10)	1.464(6)	C(9) - C(10)	1.470(6)	C(9) - C(10)	1.47(1)	C(9) - C(10)	1.453(8)	C(9) - C(10)	1.479(8)	C(9) - C(10)	1.477(9)
C(9) - N(3)	1.336(5)	C(9) - N(2)	1.333(5)	C(9) - N(2)	1.35(1)	C(9) - N(2)	1.333(8)	C(9) - N(2)	1.319(8)	C(9) - N(2)	1.317(8)
C(9) - N(4)	1.374(5)	C(9) - N(3)	1.373(5)	C(9) - N(3)	1.37(1)	C(9) - N(3)	1.376(7)	C(9) - N(3)	1.372(7)	C(9) - N(3)	1.383(8)
C(10) - C(11)	1.391(6)	C(10) - C(11)	1.374(6)	C(10) - C(11)	1.39(1)	C(10) - C(11)	1.394(8)	C(10) - C(11)	1.372(8)	C(10) - C(11)	1.37(1)
C(10) - C(15)	1.402(6)	C(10) - C(15)	1.402(6)	C(10) - C(15)	1.41(1)	C(10) - C(15)	1.394(9)	C(10) - C(15)	1.399(8)	C(10) - C(15)	1.411(8)
C(11) - C(12)	1.388(6)	C(11) - C(12)	1.404(6)	C(11) - C(12)	1.39(1)	C(11) - C(12)	1.380(1)	C(11) - C(12)	1.380(9)	C(11) - C(12)	1.39(1)
C(11) - H(11)	0.93	C(11) - H(11)	0.95	C(11) - H(11)	0.95	C(11) - H(11)	0.95	C(11) - H(11)	0.95	C(11) - H(11)	0.95
C(12) - C(13)	1.400(6)	C(12) - C(13)	1.389(6)	C(12) - C(13)	1.40(2)	C(12) - C(13)	1.392(9)	C(12) - C(13)	1.386(9)	C(12) - C(13)	1.40(1)
C(12) - H(12)	0.93	C(12) - H(12)	0.95	C(12) - H(12)	0.95	C(12) - H(12)	0.95	C(12) - H(12)	0.95	C(12) - H(12)	0.95
C(13) - C(14)	1.393(7)	C(13) - C(14)	1.384(6)	C(13) - C(14)	1.39(1)	C(13) - C(14)	1.395(9)	C(13) - C(14)	1.40(1)	C(13) - C(14)	1.39(1)
C(13) - H(13)	0.93	C(13) - H(13)	0.95	C(13) - H(13)	0.95	C(13) - H(13)	0.95	C(13) - H(13)	0.95	C(13) - H(13)	0.95
C(14) - C(15)	1.376(7)	C(14) - C(15)	1.384(6)	C(14) - C(15)	1.38(1)	C(14) - C(15)	1.380(9)	C(14) - C(15)	1.370(9)	C(14) - C(15)	1.380(9)
C(14) - H(14)	0.93	C(14) - H(14)	0.95	C(14) - H(14)	0.95	C(14) - H(14)	0.95	C(14) - H(14)	0.95	C(14) - H(14)	0.95
C(15) - C(16)	1.462(6)	C(15) - C(16)	1.468(6)	C(15) - C(16)	1.46(1)	C(15) - C(16)	1.481(8)	C(15) - C(16)	1.470(8)	C(15) - C(16)	1.473(8)
C(16) - N(4)	1.367(5)	C(16) - N(3)	1.367(5)	C(16) - N(3)	1.36(1)	C(16) - N(3)	1.376(8)	C(16) - N(3)	1.377(7)	C(16) - N(3)	1.386(7)
C(16) - N(5)	1.344(5)	C(16) - N(4)	1.338(5)	C(16) - N(4)	1.33(1)	C(16) - N(4)	1.327(8)	C(16) - N(4)	1.330(7)	C(16) - N(4)	1.309(8)
C(17) -	1.481(6)	C(17) -	1.467(5)	C(17) -	1.47(1)	C(17) -	1.462(8)	C(17) -	1.472(7)	C(17) -	1.460(9)

	C(18)		C(18)		C(18)		C(18)		C(18)	
1.331(5)	C(17) - N(4)	1.332(5)	C(17) - N(4)	1.34(1)	C(17) - N(4)	1.336(8)	C(17) - N(4)	1.337(7)	C(17) - N(4)	1.329(8)
1.371(5)	C(17) - N(5)	1.372(5)	C(17) - N(5)	1.37(1)	C(17) - N(5)	1.377(7)	C(17) - N(5)	1.368(7)	C(17) - N(5)	1.367(8)
1.379(6)	C(18) - C(19)	1.390(5)	C(18) - C(19)	1.38(1)	C(18) - C(19)	1.368(8)	C(18) - C(19)	1.380(8)	C(18) - C(19)	1.390(9)
1.405(6)	C(18) - C(23)	1.400(5)	C(18) - C(23)	1.41(1)	C(18) - C(23)	1.409(8)	C(18) - C(23)	1.408(8)	C(18) - C(23)	1.395(9)
1.395(6)	C(19) - C(20)	1.389(6)	C(19) - C(20)	1.40(1)	C(19) - C(20)	1.395(9)	C(19) - C(20)	1.383(8)	C(19) - C(20)	1.39(1)
0.93	C(19) - H(19)	0.95	C(19) - H(19)	0.95	C(19) - H(19)	0.95	C(19) - H(19)	0.95	C(19) - H(19)	0.95
1.388(6)	C(20) - C(21)	1.389(6)	C(20) - C(21)	1.38(1)	C(20) - C(21)	1.385(9)	C(20) - C(21)	1.387(9)	C(20) - C(21)	1.39(1)
0.93	C(20) - H(20)	0.95	C(20) - H(20)	0.95	C(20) - H(20)	0.95	C(20) - H(20)	0.95	C(20) - H(20)	0.95
1.388(6)	C(21) - C(22)	1.395(6)	C(21) - C(22)	1.41(1)	C(21) - C(22)	1.392(9)	C(21) - C(22)	1.401(8)	C(21) - C(22)	1.397(9)
0.93	C(21) - H(21)	0.95	C(21) - H(21)	0.95	C(21) - H(21)	0.95	C(21) - H(21)	0.95	C(21) - H(21)	0.95
1.382(6)	C(22) - C(23)	1.384(6)	C(22) - C(23)	1.37(1)	C(22) - C(23)	1.384(8)	C(22) - C(23)	1.378(7)	C(22) - C(23)	1.397(9)
0.93	C(22) - H(22)	0.95	C(22) - H(22)	0.95	C(22) - H(22)	0.95	C(22) - H(22)	0.95	C(22) - H(22)	0.95
1.468(6)	C(23) - C(24)	1.476(6)	C(23) - C(24)	1.46(1)	C(23) - C(24)	1.465(8)	C(23) - C(24)	1.454(7)	C(23) - C(24)	1.467(8)
1.364(5)	C(24) - N(5)	1.372(5)	C(24) - N(5)	1.38(1)	C(24) - N(5)	1.373(8)	C(24) - N(5)	1.370(7)	C(24) - N(5)	1.381(8)
1.331(6)	C(24) - N(6)	1.329(5)	C(24) - N(6)	1.33(1)	C(24) - N(6)	1.327(8)	C(24) - N(6)	1.335(7)	C(24) - N(6)	1.328(8)
1.466(6)	C(25) - C(26)	1.462(5)	C(25) - C(26)	1.48(1)	C(25) - C(26)	1.463(9)	C(25) - C(26)	1.462(8)	C(25) - C(26)	1.447(9)
1.331(6)	C(25) - N(6)	1.339(5)	C(25) - N(6)	1.33(1)	C(25) - N(6)	1.343(8)	C(25) - N(6)	1.335(7)	C(25) - N(6)	1.338(8)
1.365(5)	C(25) - N(7)	1.373(5)	C(25) - N(7)	1.37(1)	C(25) - N(7)	1.363(8)	C(25) - N(7)	1.382(7)	C(25) - N(7)	1.370(8)
1.381(6)	C(26) - C(27)	1.380(6)	C(26) - C(27)	1.39(1)	C(26) - C(27)	1.388(9)	C(26) - C(27)	1.376(8)	C(26) - C(27)	1.39(1)
1.395(6)	C(26) - C(31)	1.406(5)	C(26) - C(31)	1.40(1)	C(26) - C(31)	1.396(9)	C(26) - C(31)	1.414(8)	C(26) - C(31)	1.399(8)
0.93	C(27) - C(28)	1.390(6)	C(27) - C(28)	1.39(1)	C(27) - C(28)	1.393(9)	C(27) - C(28)	1.395(8)	C(27) - C(28)	1.40(1)
	1.331(5) 1.371(5) 1.379(6) 1.379(6) 1.395(6) 0.93 1.388(6) 0.93 1.388(6) 0.93 1.388(6) 0.93 1.388(6) 0.93 1.388(6) 0.93 1.388(6) 0.93 1.381(6) 1.331(6) 1.395(6) 0.93	C(18) 1.331(5) C(17) - N(4) 1.371(5) C(17) - N(5) 1.379(6) C(18) - C(19) 1.405(6) C(19) - C(20) 1.395(6) C(19) - C(20) 0.93 C(19) - C(20) 0.93 C(20) - H(19) 1.388(6) C(21) - C(21) 0.93 C(20) - H(20) 1.388(6) C(21) - C(22) 0.93 C(21) - C(23) 0.93 C(22) - C(23) 0.93 C(22) - C(23) 0.93 C(22) - C(24) 1.382(6) C(22) - C(23) 0.93 C(22) - C(24) 1.364(5) C(24) - N(5) 1.331(6) C(24) - N(6) 1.331(6) C(25) - N(6) 1.331(6) C(25) - N(7) 1.331(6) C(25) - N(6) 1.331(6) C(25) - N(7) 1.335(6) C(26) - C(27) 1.395(6) C(26) - C(27) 0.93 C(26) - C(27)	C(18)C(18)1.331(5)C(17) - N(4)1.332(5) N(4)1.371(5)C(17) - N(5)1.372(5) N(5)1.379(6)C(18) - C(19)1.390(5) C(19)1.405(6)C(18) - C(23)1.400(5) C(20)1.395(6)C(19) - C(20)1.389(6) C(21)0.93C(19) - C(21)0.95 H(19)1.388(6)C(20) - C(21)0.95 H(20)1.388(6)C(21) - C(22)0.95 H(20)1.388(6)C(21) - C(22)0.95 H(20)1.382(6)C(22) - C(23)1.384(6) C(23)0.93C(22) - C(23)0.95 H(21)1.382(6)C(22) - C(23)1.476(6) C(24)1.364(5)C(24) - N(5)1.372(5) N(5)1.331(6)C(24) - N(6)1.329(5) N(6)1.331(6)C(25) - N(6)1.339(5) N(7)1.381(6)C(25) - C(26)1.330(6) C(27)1.395(6)C(26) - C(28)1.390(6) C(28)	C(18)C(18)C(18)1.331(5)C(17) - N(4)1.332(5)C(17) - N(4)1.371(5)C(17) - N(5)1.372(5)C(17) - N(5)1.379(6)C(18) - C(19)1.390(5)C(18) - C(19)1.405(6)C(19) - C(20)1.389(6)C(19) - C(20)1.395(6)C(19) - C(20)1.389(6)C(19) - C(20)0.93C(19) - C(21)1.389(6)C(20) - C(21)0.93C(20) - C(21)1.389(6)C(20) - C(21)1.388(6)C(21) - C(22)1.395(6)C(21) - C(22)0.93C(21) - C(23)0.95C(21) - C(23)1.382(6)C(22) - C(23)1.384(6)C(22) - C(23)0.93C(22) - C(23)0.95C(22) - C(23)1.364(5)C(24) - N(5)1.372(5)C(24) - N(5)1.331(6)C(24) - N(6)1.329(5)C(24) - N(5)1.331(6)C(25) - C(26)1.339(5)C(25) - C(26)1.331(6)C(25) - C(26)1.339(5)C(25) - N(7)1.381(6)C(25) - N(7)1.339(6)C(25) - N(7)1.395(6)C(26) - C(27)1.390(6)C(26) - C(27)1.395(6)C(26) - C(27)1.390(6)C(26) - C(27)1.395(6)C(26) - C(27)1.390(6)C(26) - C(27)1.395(6)C(26) - C(28)1.390(6)C(26) - C(21)	C(18)C(18)C(18)1.331(5)C(17) - N(4)1.332(5)C(17) - N(4)1.34(1)1.371(5)C(17) - N(5)1.372(5)C(17) - N(5)1.37(1)1.379(6)C(18) - C(19)1.390(5)C(18) - C(19)1.381(1)1.405(6)C(18) - C(20)1.400(5)C(18) - C(20)1.41(1)1.395(6)C(19) - C(20)1.389(6)C(19) - C(20)1.40(1)0.93C(19) - C(20)1.389(6)C(20) - C(21)1.381(1)0.93C(20) - H(20)1.389(6)C(20) - C(21)1.381(1)0.93C(20) - H(20)1.389(6)C(20) - C(21)1.38(1)0.93C(21) - H(20)1.395(6)C(21) - C(22)1.41(1)0.93C(21) - H(20)1.395(6)C(21) - C(22)1.41(1)1.388(6)C(21) - C(22)1.395(6)C(21) - H(20)1.37(1)1.388(6)C(21) - C(22)1.384(6)C(22) - C(23)1.37(1)1.381(6)C(22) - C(24)1.37(5)C(24) - C(24)1.33(1)1.364(5)C(24) - N(6)1.329(5)C(24) - N(6)1.33(1)1.331(6)C(25) - N(7)1.33(16)C(25) - N(7)1.38(10)1.381(6)C(25) - N(7)1.33(10)C(25) - N(7)1.33(1)1.365(5)C(25) - N(7)1.33(1)C(25) - N(7)1.33(1)1.381(6)C(26) - N(6)1.33(6)C(26) - N(6)1.39(1)1.364(5)	C(18) C(18) C(18) C(13) 1.331(5) C(17) - N(4) 1.332(5) C(17) - N(4) 1.34(1) C(17) - N(4) 1.371(5) C(17) - N(5) 1.372(5) C(17) - N(5) 1.37(1) C(17) - N(5) 1.379(6) C(18) - C(19) 1.390(5) C(18) - C(19) 1.38(1) C(18) - C(19) 1.405(6) C(18) - C(20) 1.400(5) C(18) - C(20) 1.40(1) C(19) - C(20) 1.395(6) C(19) - C(20) 1.389(6) C(19) - C(20) 1.389(6) C(20) - C(21) 0.93 C(19) - H(19) 1.389(6) C(20) - C(21) 1.388(6) C(20) - C(21) 1.388(6) C(20) - H(20) 1.389(6) C(20) - H(20) 1.381(1) C(20) - C(21) 1.388(6) C(21) - C(22) 1.395(6) C(21) - C(22) 1.381(1) C(21) - C(22) 0.93 C(21) - H(20) 1.395(6) C(21) - C(23) 1.37(1) C(22) - C(23) 1.384(6) C(22) - C(23) 1.384(6) C(22) - C(23) 1.36(1) C(24) - H(22) 1.331(6) C(24)	C(18) C(18) C(18) C(18) 1.331(5) C(17) - N(4) 1.332(5) C(17) - N(4) 1.34(1) C(17) - N(4) 1.336(8) 1.371(5) C(17) - N(5) 1.372(5) C(17) - N(5) 1.37(1) C(17) - N(5) 1.37(7) 1.379(6) C(18) - C(19) 1.390(5) C(18) - C(19) 1.38(1) C(18) - C(19) 1.368(8) 1.405(6) C(18) - C(20) 1.400(5) C(18) - C(20) 1.40(1) C(18) - C(20) 1.389(6) C(20) - C(20) 1.389(6) C(20) - C(20) 1.389(7) 0.93 C(19) - H(19) 0.95 C(19) - H(19) 1.389(6) C(20) - C(21) 1.388(6) C(20) - C(21) 1.388(7) C(21) - H(20) 1.388(7) 0.93 C(20) - H(21) 0.95 C(21) - H(20) 1.381(7) C(21) - H(20) 1.389(7) 1.388(6) C(21) - H(21) 0.95 C(21) - H(20) 1.41(1) C(21) - H(20) 1.381(8) 1.382(6) C(21) - H(21) 0.95 C(21) - H(21) 0.95 C(21) - H(20) 1.381(8) C(21) - H(20) </td <td>C(18) C(18) C(18) C(18) C(18) C(18) 1.331(5) C(17)- N(4) 1.332(5) C(17)- N(5) 1.34(1) C(17)- N(5) 1.336(8) C(17)- N(5) 1.371(5) C(17)- N(5) 1.372(5) C(17)- N(5) 1.37(1) C(17)- N(5) 1.37(7) C(17)- N(5) 1.379(6) C(18)- N(5) 1.30(5) C(18)- C(19) 1.38(1) C(18)- C(23) 1.400(8) C(18)- C(23) 1.400(8) C(18)- C(23) 1.405(6) C(19)- C(20) 1.389(6) C(19)- C(20) 1.389(6) C(19)- C(20) 1.385(6) C(19)- C(21) 1.385(6) C(20)- C(21) 1.385(6) C(20)- C(21) 1.385(6) C(20)- C(21) 1.385(6) C(20)- C(21) 1.385(6) C(20)- C(21) 1.385(6) C(20)- C(21) 1.385(6) C(21)- C(21) 1.385(6) C(21)- C(21) 1.385(6) C(21)- C(21) 1.392(6) C(21)- C(21) 1.392(6) C(21)- C(21) 1.392(6) C(21)- C(22) 1.392(6) C(21)- C(22) 1.392(6) C(21)- C(23) 1.392(6) C(21)- C(23) 1.392(6) C(21)</td> <td>C(18) C(18) C(18) C(18) C(18) C(18) C(18) 1.331(s) C(17) 1.332(s) C(17) 1.34(1) C(17) 1.33(6) C(17) 1.33(7) 1.371(s) C(17) 1.37(2) C(17) 1.37(1) C(17) L137(1) C(17) L137(1) C(17) L368(8) C(18) L368(7) 1.371(s) C(18) 1.400(s) C(18) L40(1) C(18) L40(8) C(19) L388(8) C(18) L408(8) 1.405(s) C(19) L389(6) C(19) L40(1) C(18) L408(8) C(23) L418(8) C(23) L418(8) C(23) L418(8) C(23) L418(8) C(24) L387(8) C(21) L387(8) C(2</td> <td>C(18) C(18) C(18) C(18) C(18) C(18) C(18) 1.331(5) C(17)- 1.332(5) C(17)- 1.33(1) C(17)- 1.33(2) C(17)- 1.34(1) C(17)- 1.33(6) C(17)- 1.33(7) C(17)- N(4) N(</td>	C(18) C(18) C(18) C(18) C(18) C(18) 1.331(5) C(17)- N(4) 1.332(5) C(17)- N(5) 1.34(1) C(17)- N(5) 1.336(8) C(17)- N(5) 1.371(5) C(17)- N(5) 1.372(5) C(17)- N(5) 1.37(1) C(17)- N(5) 1.37(7) C(17)- N(5) 1.379(6) C(18)- N(5) 1.30(5) C(18)- C(19) 1.38(1) C(18)- C(23) 1.400(8) C(18)- C(23) 1.400(8) C(18)- C(23) 1.405(6) C(19)- C(20) 1.389(6) C(19)- C(20) 1.389(6) C(19)- C(20) 1.385(6) C(19)- C(21) 1.385(6) C(20)- C(21) 1.385(6) C(20)- C(21) 1.385(6) C(20)- C(21) 1.385(6) C(20)- C(21) 1.385(6) C(20)- C(21) 1.385(6) C(20)- C(21) 1.385(6) C(21)- C(21) 1.385(6) C(21)- C(21) 1.385(6) C(21)- C(21) 1.392(6) C(21)- C(21) 1.392(6) C(21)- C(21) 1.392(6) C(21)- C(22) 1.392(6) C(21)- C(22) 1.392(6) C(21)- C(23) 1.392(6) C(21)- C(23) 1.392(6) C(21)	C(18) C(18) C(18) C(18) C(18) C(18) C(18) 1.331(s) C(17) 1.332(s) C(17) 1.34(1) C(17) 1.33(6) C(17) 1.33(7) 1.371(s) C(17) 1.37(2) C(17) 1.37(1) C(17) L137(1) C(17) L137(1) C(17) L368(8) C(18) L368(7) 1.371(s) C(18) 1.400(s) C(18) L40(1) C(18) L40(8) C(19) L388(8) C(18) L408(8) 1.405(s) C(19) L389(6) C(19) L40(1) C(18) L408(8) C(23) L418(8) C(23) L418(8) C(23) L418(8) C(23) L418(8) C(24) L387(8) C(21) L387(8) C(2	C(18) C(18) C(18) C(18) C(18) C(18) C(18) 1.331(5) C(17)- 1.332(5) C(17)- 1.33(1) C(17)- 1.33(2) C(17)- 1.34(1) C(17)- 1.33(6) C(17)- 1.33(7) C(17)- N(4) N(

C(27) - C(28)	1.392(6)	C(27) - H(27)	0.95	C(27) - H(27)	0.95	C(27) - H(27)	0.95	C(27) - H(27)	0.95	C(27) - H(27)	0.95
C(28) - C(29)	1.402(7)	C(28) - C(29)	1.391(6)	C(28) - C(29)	1.40(1)	C(28) - C(29)	1.380(1)	C(28) - C(29)	1.376(8)	C(28) - C(29)	1.384(9)
C(28) - H(28)	0.93	C(28) - H(28)	0.951	C(28) - H(28)	0.95	C(28) - H(28)	0.95	C(28) - H(28)	0.95	C(28) - H(28)	0.95
C(29) - H(30)	1.384(7)	C(29) – C(30)	1.389(6)	C(29) - C(30)	1.38(1)	C(29) - C(30)	1.406(9)	C(29) - C(30)	1.414(9)	C(29) - C(30)	1.40(1)
C(29) - H(29)	0.929	C(29) - H(29)	0.95	C(29) - H(29)	0.95	C(29) - H(29)	0.95	C(29) - H(29)	0.95	C(29) - H(29)	0.95
C(30) - C(31)	1.386(6)	C(30) - C(31)	1.385(5)	C(30) - C(31)	1.39(1)	C(30) - C(31)	1.381(8)	C(30) - C(31)	1.372(9)	C(30) - C(31)	1.379(9)
C(30) - H(30)	0.93	C(30) - H(30)	0.95	C(30) - H(30)	0.95	C(30) - H(30)	0.95	C(30) - H(30)	0.95	C(30) - H(30)	0.95
C(31) - C(32)	1.476(6)	C(31) - C(32)	1.472(5)	C(31) - C(32)	1.47(1)	C(31) - C(32)	1.475(8)	C(31) - C(32)	1.446(7)	C(31) - C(32)	1.470(9)
C(32) - N(1)	1.330(5)	C(32) - N(7)	1.372(5)	C(32) - N(7)	1.35(1)	C(32) - N(7)	1.376(8)	C(32) - N(7)	1.377(7)	C(32) - N(7)	1.394(7)
C(32) - N(8)	1.370(5)	C(32) - N(8)	1.332(5)	C(32) - N(8)	1.34(1)	C(32) - N(8)	1.329(8)	C(32) - N(8)	1.340(7)	C(32) - N(8)	1.325(7)
C(33) - C(34)	1.472(6)	C(33) - C(34)	1.469(5)	C(33) - C(34)	1.47(1)	C(33) - C(34)	1.466(9)	C(33) - C(34)	1.475(8)	C(33) - C(34)	1.481(8)
C(33) - N(9)	1.335(5)	C(33) - N(9)	1.369(5)	C(33) - N(9)	1.37(1)	C(33) - N(9)	1.379(7)	C(33) - N(9)	1.371(7)	C(33) - N(9)	1.379(8)
C(33) - N(10)	1.366(5)	C(33) - N(16)	1.340(5)	C(33) - N(16)	1.33(1)	C(33) - N(16)	1.334(8)	C(33) - N(16)	1.343(7)	C(33) - N(16)	1.322(8)
C(34) - C(35)	1.384(6)	C(34) - C(35)	1.380(6)	C(34) - C(35)	1.39(1)	C(34) - C(35)	1.384(9)	C(34) - C(35)	1.346(8)	C(34) - C(35)	1.389(9)
C(34) - C(39)	1.397(6)	C(34) - C(39)	1.402(6)	C(34) - C(39)	1.41(1)	C(34) - C(39)	1.406(8)	C(34) - C(39)	1.404(8)	C(34) - C(39)	1.392(9)
C(35) - C(36)	1.393(6)	C(35) - C(36)	1.389(6)	C(35) - C(36)	1.39(1)	C(35) - C(36)	1.389(9)	C(35) - C(36)	1.417(9)	C(35) - C(36)	1.406(9)
C(35) - H(35)	0.93	C(35) - H(35)	0.95	C(35) - H(35)	0.95	C(35) - H(35)	0.95	C(35) - H(35)	0.95	C(35) - H(35)	0.95
C(36) - C(37)	1.391(7)	C(36) - C(37)	1.393(6)	C(36) - C(37)	1.40(1)	C(36) - C(37)	1.388(9)	C(36) - C(37)	1.379(9)	C(36) - C(37)	1.40(1)
C(36) - H(36)	0.93	C(36) - H(36)	0.95	C(36) - H(36)	0.95	C(36) - H(36)	0.95	C(36) - H(36)	0.95	C(36) - H(36)	0.95
C(37) - C(38)	1.400(7)	C(37) - C(38)	1.399(6)	C(37) - C(38)	1.40(1)	C(37) - C(38)	1.402(9)	C(37) - C(38)	1.386(9)	C(37) - C(38)	1.42(1)
C(37) - H(37)	0.93	C(37) - H(37)	0.95	C(37) - H(37)	0.95	C(37) - H(37)	0.95	C(37) - H(37)	0.95	C(37) - H(37)	0.95
C(38) -	1.388(6)	C(38) -	1.378(5)	C(38) -	1.40(1)	C(38) -	1.376(9)	C(38) -	1.389(8)	C(38) -	1.376(9)

C(39)		C(39)		C(39)		C(39)		C(39)		C(39)	
C(38) -	0.93	C(38) -	0.95	C(38) -	0.95	C(38) -	0.95	C(38) -	0.95	C(38) -	0.95
C(39) - C(40)	1.470(5)	C(39) - C(40)	1.463(5)	C(39) -	1.47(1)	C(39) - C(40)	1.457(8)	C(39) - C(40)	1.470(8)	C(39) - C(40)	1.471(9)
C(40) - N(10)	1.371(6)	C(40) - N(9)	1.372(5)	C(40) - N(9)	1.47(1)	C(40) - N(9)	1.371(8)	C(40) - N(9)	1.375(7)	C(40) - N(9)	1.372(7)
C(40) - N(11)	1.337(6)	C(40) - N(10)	1.331(5)	C(40) - N(10)	1.34(1)	C(40) - N(10)	1.346(7)	C(40) - N(10)	1.328(7)	C(41) - C(42)	1.462(9)
C(41) - C(42)	1.468(6)	C(41) - C(42)	1.465(5)	C(41) - C(42)	1.46(1)	C(41) - C(42)	1.483(8)	C(41) - C(42)	1.463(8)	C(41) - N(10)	1.326(8)
C(41) - N(11)	1.343(5)	C(41) - N(10)	1.336(5)	C(41) - N(10)	1.33(1)	C(41) - N(10)	1.318(8)	C(41) - N(10)	1.329(7)	C(41) - N(11)	1.382(8)
C(41) - N(12)	1.365(5)	C(41) - N(11)	1.385(5)	C(41) - N(11)	1.37(1)	C(41) - N(11)	1.374(8)	C(41) - N(11)	1.383(7)	C(42) - C(43)	1.390(9)
C(42) - C(43)	1.382(6)	C(42) - C(43)	1.381(6)	C(42) - C(43)	1.39(1)	C(42) - C(43)	1.389(8)	C(42) - C(43)	1.395(8)	C(42) - C(47)	1.397(9)
C(42) - C(47)	1.397(6)	C(42) - C(47)	1.409(5)	C(42) - C(47)	1.41(1)	C(42) - C(47)	1.392(8)	C(42) - C(47)	1.399(8)	C(43) - C(44)	1.39(1)
C(43) - C(44)	1.397(7)	C(43) - C(44)	1.382(6)	C(43) - C(44)	1.39(1)	C(43) - C(44)	1.393(9)	C(43) - C(44)	1.381(9)	C(43) - H(43)	0.95
C(43) - H(43)	0.93	C(43) - H(43)	0.95	C(43) - H(43)	0.95	C(43) - H(43)	0.95	C(43) - H(43)	0.95	C(44) - C(45)	1.400(9)
C(44) - C(45)	1.395(7)	C(44) - C(45)	1.386(6)	C(44) - C(45)	1.39(1)	C(45) - C(45)	1.390(1)	C(44) - C(45)	1.389(9)	C(44) - H(44)	0.95
C(44) - H(44)	0.929	C(44) - H(44)	0.95	C(44) - H(44)	0.95	C(44) - H(44)	0.95	C(44) - H(44)	0.95	C(45) - C(46)	1.381(9)
C(45) - C(46)	1.380(6)	C(45) - C(46)	1.402(6)	C(45) - C(46)	1.40(1)	C(45) - C(46)	1.390(9)	C(45) - C(46)	1.401(8)	C(45) - H(45)	0.95
C(45) - H(45)	0.93	C(45) - H(45)	0.95	C(45) - H(45)	0.95	C(45) - H(45)	0.95	C(45) - H(45)	0.95	C(46) - C(47)	1.388(9)
C(46) - C(47)	1.394(6)	C(46) - C(47)	1.375(6)	C(46) - C(47)	1.39(1)	C(46) - C(47)	1.391(9)	C(46) - C(47)	1.382(8)	C(46) - H(46)	0.95
C(46) - H(46)	0.93	C(46) - H(46)	0.95	C(46) - H(46)	0.95	C(46) - H(46)	0.95	C(46) - H(46)	0.95	C(47) - C(48)	1.461(9)
C(47) - C(48)	1.464(6)	C(47) - C(48)	1.455(6)	C(47) - C(48)	1.48(1)	C(47) - C(48)	1.463(8)	C(47) - C(48)	1.477(8)	C(48) - N(11)	1.368(8)
C(48) - N(12)	1.364(5)	C(48) - N(11)	1.368(5)	C(48) - N(11)	1.38(1)	C(48) - N(11)	1.360(7)	C(48) - N(11)	1.372(8)	C(48) - N(12)	1.342(8)
C(48) - N(13)	1.335(5)	C(48) - N(12)	1.347(5)	C(48) - N(12)	1.33(1)	C(48) - N(12)	1.328(8)	C(48) - N(12)	1.324(7)	C(49) - C(50)	1.457(8)
C(49) - C(50)	1.459(6)	C(49) - C(50)	1.485(5)	C(49) - C(50)	1.47(1)	C(49) - C(50)	1.479(8)	C(49) - C(50)	1.468(7)	C(49) - N(12)	1.340(8)

C(49) - N(13)	1.343(6)	C(49) - N(12)	1.326(5)	C(49) - N(12)	1.35(1)	C(49) - N(12)	1.321(8)	C(49) - N(12)	1.339(7)	C(49) - N(13)	1.386(9)
C(49) - N(14)	1.372(5)	C(49) - N(13)	1.372(5)	C(49) - N(13)	1.36(1)	C(49) - N(13)	1.375(7)	C(49) - N(13)	1.376(7)	C(50) - C(51)	1.38(1)
C(50) - C(51)	1.392(6)	C(50) - C(51)	1.385(5)	C(50) - C(51)	1.38(1)	C(50) - C(51)	1.381(8)	C(50) - C(51)	1.370(8)	C(50) - C(55)	1.400(9)
C(50) - C(55)	1.395(6)	C(50) - C(55)	1.392(6)	C(50) - C(55)	1.41(1)	C(50) - C(55)	1.392(8)	C(50) - C(55)	1.404(8)	C(51) - C(52)	1.399(9)
C(51) - C(52)	1.391(6)	C(51) - C(52)	1.400(6)	C(51) - C(52)	1.40(1)	C(51) - C(52)	1.383(9)	C(51) - C(52)	1.391(8)	C(51) - H(51)	0.949
C(51) - H(51)	0.93	C(51) - H(51)	0.95	C(51) - H(51)	0.95	C(51) - H(51)	0.95	C(51) - H(51)	0.95	C(52) - C(53)	1.39(1)
C(52) - C(53)	1.390(6)	C(52) - C(53)	1.383(6)	C(52) - C(53)	1.40(1)	C(52) - C(53)	1.380(1)	C(52) - C(53)	1.381(9)	C(52) - H(52)	0.95
C(52) - H(52)	0.93	C(52) - H(52)	0.95	C(52) - H(52)	0.95	C(52) - H(52)	0.95	C(52) - H(52)	0.95	C(53) - C(54)	1.39(1)
C(53) - C(54)	1.408(6)	C(53) - C(54)	1.386(6)	C(53) - C(54)	1.39(1)	C(53) - C(54)	1.400(1)	C(53) - C(54)	1.390(8)	C(53) - H(53)	0.95
C(53) - H(53)	0.931	C(53) - H(53)	0.95	C(53) - H(53)	0.95	C(53) - H(53)	0.95	C(53) - H(53)	0.95	C(54) - C(55)	1.390(8)
C(54) - C(55)	1.391(6)	C(54) - C(55)	1.392(6)	C(54) - C(55)	1.38(1)	C(54) - C(55)	1.380(1)	C(54) - C(55)	1.388(8)	C(54) - H(54)	0.95
C(54) - H(54)	0.929	C(54) - H(54)	0.95	C(54) - H(54)	0.95	C(54) - H(54)	0.95	C(54) - H(54)	0.95	C(55) - C(56)	1.465(8)
C(55) - C(56)	1.477(6)	C(55) - C(56)	1.467(5)	C(55) - C(56)	1.47(1)	C(55) - C(56)	1.471(8)	C(55) - C(56)	1.470(7)	C(56) - N(13)	1.384(8)
C(56) - N(14)	1.368(5)	C(56) - N(13)	1.364(5)	C(56) - N(13)	1.37(1)	C(56) - N(13)	1.371(7)	C(56) - N(13)	1.369(7)	C(56) - N(14)	1.324(9)
C(56) - N(15)	1.333(6)	C(56) - N(14)	1.333(5)	C(56) - N(14)	1.34(1)	C(56) - N(14)	1.334(8)	C(56) - N(14)	1.336(7)	C(57) - C(58)	1.464(9)
C(57) - C(58)	1.460(6)	C(57) - C(58)	1.467(6)	C(57) - C(58)	1.46(1)	C(57) - C(58)	1.472(8)	C(57) - C(58)	1.475(8)	C(57) - N(14)	1.327(8)
C(57) - N(15)	1.340(6)	C(57) - N(14)	1.329(5)	C(57) - N(14)	1.33(1)	C(57) - N(14)	1.334(7)	C(57) - N(14)	1.336(8)	C(57) - N(15)	1.377(8)
C(57) - N(16)	1.373(5)	C(57) - N(15)	1.368(4)	C(57) - N(15)	1.37(1)	C(57) - N(15)	1.378(7)	C(57) - N(15)	1.365(7)	C(58) - C(59)	1.382(9)
C(58) - C(59)	1.389(7)	C(58) - C(59)	1.383(6)	C(58) - C(59)	1.38(1)	C(58) - C(59)	1.377(9)	C(58) - C(59)	1.379(8)	C(58) - C(63)	1.415(9)
C(58) - C(63)	1.402(6)	C(58) - C(63)	1.396(6)	C(58) - C(63)	1.41(1)	C(58) - C(63)	1.405(8)	C(58) - C(63)	1.393(8)	C(59) - C(60)	1.39(1)
C(59) - C(60)	1.391(6)	C(59) - C(60)	1.388(6)	C(59) - C(60)	1.40(2)	C(59) - C(60)	1.392(9)	C(59) - C(60)	1.401(9)	C(59) - H(59)	0.95
C(59) -	0.93	C(59) -	0.95	C(59) -	0.95	C(59) -	0.95	C(59) -	0.95	C(60) -	1.38(1)

H(59)		H(59)		H(59)		H(59)		H(59)		C(61)	
C(60) - C(61)	1.391(6)	C(60) - C(61)	1.393(6)	C(60) - C(61)	1.39(1)	C(60) - C(61)	1.390(1)	C(60) - C(61)	1.383(9)	C(60) - H(60)	0.95
C(60) - H(60)	0.93	C(60) - H(60)	0.95	C(60) - H(60)	0.95	C(60) - H(60)	0.95	C(60) - H(60)	0.95	C(61) - C(62)	1.42(1)
C(61) - C(62)	1.385(6)	C(61) - C(62)	1.385(6)	C(61) - C(62)	1.40(1)	C(61) - C(62)	1.401(9)	C(61) - C(62)	1.400(9)	C(61) - H(61)	0.95
C(61) - H(61)	0.93	C(61) - H(61)	0.95	C(61) - H(61)	0.95	C(61) - H(61)	0.95	C(61) - H(61)	0.95	C(62) - C(63)	1.37(1)
C(62) - C(63)	1.392(6)	C(62) - C(63)	1.382(7)	C(62) - C(63)	1.39(1)	C(62) - C(63)	1.389(7)	C(62) - C(63)	1.393(8)	C(62) - H(62)	0.95
C(62) - H(62)	0.93	C(62) - H(62)	0.95	C(62) - H(62)	0.95	C(62) - H(62)	0.95	C(62) - H(62)	0.95	C(62) - H(62)	0.95
C(63) - C(64)	1.475(6)	C(63) - C(64)	1.382(7)	C(63) - C(64)	1.47(1)	C(63) - C(64)	1.452(8)	C(63) - C(64)	1.475(7)	C(63) - C(64)	1.468(9)
C(64) - N(9)	1.334(5)	C(64) - N(15)	1.379(5)	C(64) - N(15)	1.37(1)	C(64) - N(15)	1.367(7)	C(64) - N(15)	1.361(7)	C(64) - N(15)	1.380(8)
C(64) - N(16)	1.366(5)	C(64) - N(16)	1.331(5)	C(64) - (N16)	1.33(1)	C(64) - N(16)	1.334(8)	C(64) - N(16)	1.325(7)	C(64) - N(16)	1.324(8)

]	Fable S13.	Bond	Leng	ths f	or δ	-LnPc ₂
Г						

Pr	Pc ₂	Nd	Pc ₂	Sm	Pc ₂	Gd	Pc ₂	Tb	Pc ₂
Atom 1 – Atom 2	Bond Lengths (Å)	Atom 1 – Atom 2	Bond Length (Å)						
Pr(1) - N(1)	2.476	Nd(1) - N(2)	2.473	Sm(1) - N(2)	2.457	Gd(1) - N(2)	2.431	Tb(1) - N(2)	2.426
Pr(1) - N(3)	2.481	Nd(1) - N(4)	2.471	Sm(1) - N(4)	2.444	Gd(1) - N(4)	2.436	Tb(1) - N(4)	2.424
Pr(1) - N(5)	2.487	Nd(1) - N(6)	2.468	Sm(1) - N(6)	2.445	Gd(1) - N(6)	2.422	Tb(1) - N(6)	2.417
Pr(1) - N(7)	2.473	Nd(1) - N(8)	2.466	Sm(1) - N(8)	2.451	Gd(1) - N(8)	2.431	Tb(1) - N(8)	2.425
C(1) - C(2)	1.460(3)	C(1) - C(2)	1.463(6)	C(1) - C(2)	1.465(2)	C(1) - C(2)	1.465(6)	C(1) - C(2)	1.460(6)
C(1) - N(1)	1.367(3)	C(1) - N(1)	1.343(5)	C(1) - N(1)	1.336(2)	C(1) - N(1)	1.339(5)	C(1) - N(1)	1.334(6)
C(1) - N(8)	1.335(3)	C(1) - N(2)	1.366(5)	C(1) - N(2)	1.369(2)	C(1) - N(2)	1.373(5)	C(1) - N(2)	1.361(6)
C(2) - C(3)	1.388(3)	C(2) - C(3)	1.383(6)	C(2) - C(3)	1.388(2)	C(2) - C(3)	1.382(6)	C(2) - C(3)	1.389(6)
C(2) - C(7)	1.400(3)	C(2) - C(7)	1.394(6)	C(2) - C(7)	1.401(2)	C(2) - C(7)	1.394(6)	C(2) - C(7)	1.406(6)
C(3) - C(4)	1.397(3)	C(3) - C(4)	1.388(6)	C(3) - C(4)	1.396(2)	C(3) - C(4)	1.395(6)	C(3) - C(4)	1.399(6)
C(3) - H(3)	0.95	C(3) - H(1)	0.93	C(3) - H(3)	0.95	C(3) - H(3)	0.95	C(3) - H(3)	0.95
C(4) -	1.398(3)	C(4) -	1.385(6)	C(4) -	1.403(2)	C(4) -	1.386(6)	C(4) -	1.395(7)

C(5)		C(5)		C(5)		C(5)		C(5)	
C(4) - H(4)	0.95	C(4) - H(2)	0.93	C(4) - H(4)	0.95	C(4) - H(4)	0.95	C(4) - H(4)	0.95
C(5) - C(6)	1.387(3)	C(5) - C(6)	1.382(6)	C(5) - C(6)	1.395(2)	C(5) - C(6)	1.395(6)	C(5) - C(6)	1.393(6)
C(5) - H(5)	0.95	C(5) - H(3)	0.93	C(5) - H(5)	0.95	C(5) - H(5)	0.95	C(5) - H(5)	0.949
C(6) - C(7)	1.390(3)	C(6) - C(7)	1.388(6)	C(6) - C(7)	1.392(2)	C(6) - C(7)	1.387(5)	C(6) - C(7)	1.377(6)
C(6) - H(6)	0.95	C(6) - H(4)	0.929	C(6) - H(6)	0.95	C(6) - H(6)	0.95	C(6) - H(6)	0.95
C(7) - C(8)	1.463(3)	C(7) - C(8)	1.458(6)	C(7) - C(8)	1.471(2)	C(7) - C(8)	0.95	C(7) - C(8)	1.471(6)
C(8) - N(1)	1.369(3)	C(8) - N(2)	1.375(5)	C(8) - N(2)	1.371(2)	C(8) - N(2)	1.370(5)	C(8) - N(2)	1.371(6)
C(8) - N(2)	1.336(3)	C(8) - N(3)	1.340(5)	C(8) - N(3)	1.339(2)	C(8) - N(3)	1.329(5)	C(8) - N(3)	1.339(6)
C(9) - C(10)	1.464(3)	C(9) - C(10)	1.462(6)	C(9) - C(10)	1.470(2)	C(9) - C(10)	1.461(6)	C(9) - C(10)	1.467(6)
C(9) - N(2)	1.337(3)	C(9) - N(3)	1.329(5)	C(9) - N(3)	1.338(2)	C(9) - N(3)	1.332(5)	C(9) - N(3)	1.337(5)
C(9) - N(3)	1.370(3)	C(9) - N(4)	1.370(5)	C(9) - N(4)	1.372(2)	C(9) - N(4)	1.368(5)	C(9) - N(4)	1.379(6)
C(10) - C(11)	1.391(3)	C(10) - C(11)	1.389(6)	C(10) - C(11)	1.388(2)	C(10) - C(11)	1.389(6)	C(10) - C(11)	1.383(6)
C(10) - C(15)	1.396(3)	C(10) - C(15)	1.399(6)	C(10) - C(15)	1.402(2)	C(10) - C(15)	1.404(5)	C(10) - C(15)	1.390(6)
C(11) -	1.393(3)	C(11) -	1.384(6)	C(11) -	1.397(2)	C(11) -	1.392(6)	C(11) -	1.402(7)

C(12)		C(12)		C(12)		C(12)		C(12)	
C(11) - H(11)	0.95	C(11) - H(5)	0.93	C(11) - H(11)	0.95	C(11) - H(11)	0.95	C(11) - H(11)	0.95
C(12) - C(13)	1.394(3)	C(12) - C(13)	1.391(6)	C(12) - C(13)	1.399(2)	C(12) - C(13)	1.398(6)	C(12) - C(13)	1.376(6)
C(12) - H(12)	0.95	C(12) - H(6)	0.93	C(12) - H(12)	0.95	C(12) - H(12)	0.95	C(12) - H(12)	0.95
C(13) - C(14)	1.392(3)	C(13) - C(14)	1.393(6)	C(13) - C(14)	1.393(2)	C(13) - C(14)	1.392(6)	C(13) - C(14)	1.387(6)
C(13) - H(13)	0.95	C(13) - H(7)	0.93	C(13) - H(13)	0.95	C(13) - H(13)	0.95	C(13) - H(13)	0.95
C(14) - C(15)	1.389(3)	C(14) - C(15)	1.387(6)	C(14) - C(15)	1.390(2)	C(14) - C(15)	1.388(6)	C(14) - C(15)	1.386(6)
C(14) - H(14)	0.95	C(14) - H(8)	0.93	C(14) - H(14)		C(14) - H(14)	0.95	C(14) - H(14)	0.95
C(15) - C(16)	1.464(3)	C(15) - C(16)	1.476(6)	C(15) - C(16)	1.463(2)	C(15) - C(16)	1.465(6)	C(15) - C(16)	1.451(6)
C(16) - N(3)	1.369(3)	C(16) - N(4)	1.368(5)	C(16) - N(4)	1.372(2)	C(16) - N(4)	1.362(5)	C(16) - N(4)	1.361(5)
C(16) - N(4)	1.336(3)	C(16) - N(5)	1.335(5)	C(16) - N(5)	1.337(2)	C(16) - N(5)	1.341(5)	C(16) - N(5)	1.339(6)
C(17) - C(18)	1.463(3)	C(17) - C(18)	1.466(6)	C(17) - C(18)	1.467(2)	C(17) - C(18)	1.742(5)	C(17) - C(18)	1.460(6)
C(17) - N(4)	1.336(3)	C(17) – N(5)	1.340(5)	C(17) - N(5)	1.334(2)	C(17) - N(5)	1.342(5)	C(17) - N(5)	1.337(6)
C(17) - N(5)	1.365(3)	C(17) - N(6)	1.365(5)	C(17) - N(6)	1.372(2)	C(17) - N(6)	1.370(5)	C(17) - N(6)	1.373(5)

C(18) - C(19)	1.388(3)	C(18) - C(19)	1.382(6)	C(18) - C(19)	1.392(2)	C(18) - C(19)	1.369(5)	C(18) - C(19)	1.388(6)
C(18) - C(23)	1.400(3)	C(18) - C(23)	1.395(6)	C(18) - C(23)	1.400(2)	C(18) - C(23)	1.406(5)	C(18) - C(23)	1.394(6)
C(19) - C(20)	1.391(3)	C(19) - C(20)	1.391(6)	C(19) - C(20)	1.394(2)	C(19) - C(20)	1.396(6)	C(19) - C(20)	1.391(6)
C(19) - H(19)	0.95	C(19) - H(9)	0.931	C(19) - H(19)	0.95	C(19) - H(19)	0.95	C(19) - H(19)	0.95
C(20) - C(21)	1.399(3)	C(20) - C(21)	1.388(6)	C(20) - C(21)	1.404(2)	C(20) - C(21)	1.388(6)	C(20) - C(21)	1.396(7)
C(20) - H(20)	0.95	C(20) - H(10)	0.93	C(20) - H(20)	0.95	C(20) - H(20)	0.95	C(20) - H(20)	0.95
C(21) - C(22)	1.393(3)	C(21) - C(22)	1.384(6)	C(21) - C(22)	1.391(2)	C(21) - C(22)	1.393(6)	C(21) - C(22)	1.383(6)
C(21) - H(21)	0.95	C(21) - H(11)	0.93	C(21) - H(21)	0.95	C(21) - H(21)	0.95	C(21) - H(21)	0.95
C(22) - C(23)	1.390(3)	C(22) - C(23)	1.382(6)	C(22) - C(23)	1.389(2)	C(22) - C(23)	1.386(5)	C(22) - C(23)	1.386(6)
C(22) - H(22)	0.95	C(22) - H(12)	0.93	C(22) - H(22)	0.95	C(22) - H(22)	0.95	C(22) - H(22)	0.95
C(23) - C(24)	1.470(3)	C(23) - C(24)	1.460(6)	C(23) - C(24)	1.469(2)	C(23) - C(24)	1.464(5)	C(23) - C(24)	1.473(6)
C(24) - N(5)	1.369(3)	C(24) - N(6)	1.365(5)	C(24) - N(6)	1.369(2)	C(24) - N(6)	1.369(5)	C(24) - N(6)	1.365(5)
C(24) - N(6)	1.337(3)	C(24) - N(7)	1.336(5)	C(24) - N(7)	1.337(2)	C(24) - N(7)	1.336(5)	C(24) - N(7)	1.337(6)

C(25) - C(26)	1.471(3)	C(25) - C(26)	1.468(6)	C(25) - C(26)	1.470(2)	C(25) - C(26)	1.461(6)	C(25) - C(26)	1.466(6)
C(25) - N(6)	1.338(3)	C(25) - N(7)	1.335(5)	C(25) - N(7)	1.337(2)	C(25) - N(7)	1.332(5)	C(25) - N(7)	1.334(6)
C(25) - N(7)	1.374(3)	C(25) - N(8)	1.367(5)	C(25) - N(8)	1.370(2)	C(25) - N(8)	1.368(5)	C(25) - N(8)	1.369(5)
C(26) - C(27)	1.384(3)	C(26) - C(27)	1.384(6)	C(26) - C(27)	1.391(2)	C(26) - C(27)	1.384(5)	C(26) - C(27)	1.393(6)
C(26) - C(31)	1.397(3)	C(26) - C(31)	1.387(6)	C(26) - C(31)	1.399(2)	C(26) - C(31)	1.398(5)	C(26) - C(31)	1.385(6)
C(27) - C(28)	1.395(3)	C(27) - C(28)	1.376(6)	C(27) - C(28)	1.398(2)	C(27) - C(28)	1.402(6)	C(27) - C(28)	1.391(7)
C(27) - H(27)	0.95	C(27) - H(13)	0.93	C(27) - H(27)	0.95	C(27) - H(27)	0.95	C(27) - H(27)	0.949
C(28) - C(29)	1.393(3)	C(28) - C(29)	1.394(6)	C(28) - C(29)	1.399(2)	C(28) - C(29)	1.400(6)	C(28) - C(29)	1.388(7)
C(28) - H(28)	0.95	C(28) - H(14)	0.93	C(28) - H(28)	0.95	C(28) - H(28)	0.95	C(28) - H(28)	0.95
C(29) - C(30)	1.393(3)	C(29) - C(30)	1.379(6)	C(29) - C(30)	1.369(2)	C(29) - C(30)	1.374(6)	C(29) - C(30)	1.396(7)
C(29) - H(29)	0.95	C(29) - H(15)	0.931	C(29) - H(29)	0.95	C(29) - H(29)	0.95	C(29) - H(29)	0.95
C(30) - C(31)	1.388(3)	C(30) - C(31)	1.383(5)	C(30) - C(31)	1.389(2)	C(30) - C(31)	1.382(6)	C(30) - C(31)	1.385(6)
C(30) - H(30)	0.95	C(30) - H(16)	0.93	C(30) - H(30)	0.95	C(30) - H(30)	0.95	C(30) - H(30)	0.95

C(31) - C(32)	1.458(3)	C(31) - C(32)	1.475(5)	C(31) - C(32)	1.466(2)	C(31) - C(32)	1.459(6)	C(31) - C(32)	1.462(6)
C(32) - N(7)	1.368(3)	C(32) - N(1)	1.334(5)	C(32) - N(1)	1.336(2)	C(32) - N(1)	1.334(5)	C(32) - N(1)	1.327(6)
C(32) - N(8)	1.337(3)	C(32) - N(8)	1.369(5)	C(32) - N(8)	1.370(2)	C(32) - N(8)	1.368(5)	C(32) - N(8)	1.371(6)

La	Pc ₂	PrPc ₂		NdPc ₂		SmPc ₂		GdPc ₂		TbPc ₂		DyPc ₂		ErPc ₂		YbPc ₂	
Atom 1 – Atom 2	Bond Length (Å)																
La(1) - N(1)	2.442	Pr(1) - N(1)	2.458	Nd(1) - N(2)	2.463	Sm(1) - N(1)	2.481	Gd(1) - N(1)	2.438	Tb(1) - N(1)	2.438	Dy(1) - N(3)	2.408	Er(1) - N(2)	2.384	Yb(1) - N(1)	2.384
La(1) - N(3)	2.426	Pr(1) - N(3)	2.476	Nd(1) - N(4)	2.470	Sm(1) - N(3)	2.462	Gd(1) - N(3)	2.422	Tb(1) - N(3)	2.428	Dy(1) - N(5)	2.415	Er(1) - N(4)	2.390	Yb(1) - N(3)	2.371
La(1) - N(5)	2.440	Pr(1) - N(5)	2.486	Nd(1) - N(6)	2.477	Sm(1) - N(5)	2.476	Gd(1) - N(5)	2.431	Tb(1) - N(5)	2.439	Dy(1) - N(7)	2.410	Er(1) - N(6)	2.403	Yb(1) - N(5)	2.394
La(1) - N(7)	2.431	Pr(1) - N(6)	2.475	Nd(1) - N(8)	2.462	Sm(1) - N(7)	2.471	Gd(1) - N(7)	2.430	Tb(1) - N(7)	2.433	Dy(1) - N(8)	2.426	Er(1) - N(8)	2.388	Yb(1) - N(7)	2.384
La(1) - N(9)	2.430	Pr(1) - N(9)	2.480	Nd(1) - N(10)	2.477	Sm(1) - N(9)	2.465	Gd(1) - N(9)	2.427	Tb(1) - N(10)	2.432	Dy(1) - N(9)	2.407	Er(1) - N(10)	2.395	Yb(1) - N(9)	2.379
C(1) - C(1)	1.399(5)	C(1) - C(1)	1.392(4	C(1) - C(2)	1.459(3	C(1) - C(1)	1.375(6	C(1) - C(1)	1.390(1	C(1) - C(1)	1.398(3	C(10) - C(12)	1.400(7	C(1) - C(2)	1.465(6)	C(1) - C(1)	1.390(1
C(1) - C(2)	1.396(5)	C(1) - C(2)	1.394(3)	C(1) - N(1)	1.339	C(1) - C(2)	1.403(5)	C(1) - C(2)	1.382(8	C(1) - C(2)	1.396(2	C(10) - C(G)	1.394(7)	C(1) - N(1)	1.335	C(1) - C(2)	1.385(9)
C(1) - H(1)	0.95	C(1) - H(1)	0.95	C(1) - N(2)	1.368(3)	C(1) - H(1)	0.95	C(1) - H(1)	0.931	C(1) - H(1)	0.95	C(10) - H(10)	0.929	C(1) - N(2)	1.367(6)	C(1) - H(1)	0.95
C(2) - C(3)	1.386(4	C(2) - C(3)	1.391(3)	C(2) - C(3)	1.393(3)	C(2) - C(3)	1.381(5	C(2) - C(3)	1.390(8	C(2) - C(3)	1.389(2)	C(11) - C(16)	1.376(7	C(2) - C(3)	1.387(6	C(2) - C(3)	1.386(9
C(2) - H(2)	0.95	C(2) - H(2)	0.95	C(2) - C(7)	1.401(3	C(2) - H(2)	0.95	C(2) - H(2)	0.929	C(2) - H(2)	0.95	C(11) - C(R)	1.387(7	C(2) - C(7)	1.391(6	C(2) - H(2)	0.949
C(3) - C(3)	1.409(3	C(3) - C(3)	1.399(3)	C(3) - C(4)	1.391(4	C(3) - C(3)	1.403(5	C(3) - C(3)	1.382(6	C(3) - C(3)	1.402(2	C(11) - H(11)	0.93	C(3) - C(4)	1.391(6	C(3) - C(3)	1.400(1
C(3) - C(4)	1.467(4	C(3) - C(4)	1.464(3	C(3) - H(3)	0.95	C(3) - C(4)	1.470(4	C(3) - C(4)	1.464(7	C(3) - C(4)	1.468(2	C(12) - C(K)	1.380(7	C(3) - H(3)	0.95	C(3) - C(4)	1.470(8
C(4) - N(1)	1.367	C(4) - N(1)	1.368	C(4) - C(5)	1.403(4	C(4) - N(1)	1.365	C(4) - N(1)	1.369	C(4) - N(1)	1.371	C(12) - H(12)	0.93	C(4) - C(5)	1.397(6	C(4) - N(1)	1.363

Table S14. Bond Lengths for LnPc2·CH2Cl2

C(4) - N(2)	1.337(4)	C(4) - N(2)	1.340(3)	C(4) - H(4)	0.95	C(4) - N(2)	1.338(4)	C(4) - N(2)	1.333(6)	C(4) - N(2)	1.338(2	C(13) - C(15)	1.393(7)	C(4) - H(4)	0.95	C(4) - N(2)	1.341(8)
C(5) - C(6)	1.456(4)	C(5) - C(6)	1.469(3)	C(5) - C(6)	1.391(3)	C(5) - C(6)	1.470(5)	C(5) - C(6)	1.465(7)	C(5) - C(6)	1.468(2)	C(13) - C(U)	1.379(7)	C(5) - C(6)	1.395(6)	C(5) - C(6)	1.470(1)
C(5) - N(2)	1.337(4)	C(5) - N(2)	1.342(2	C(5) - H(5)	0.95	C(5) - N(2)	1.335(4)	C(5) - N(2)	1.355(7)	C(5) - N(2)	1.338(2	C(13) - H(13)	0.93	C(5) - H(5)	0.949	C(5) - N(2)	1.340(7
C(5) - N(3)	1.372(4)	C(5) - N(3)	1.364(2	C(6) - C(7)	1.388(3	C(5) - N(3)	1.368(4)	C(5) - N(3)	1.368(6)	C(5) - N(3)	1.368(2	C(14) - C(16)	1.407(8	C(6) - C(7)	1.394(6)	C(5) - N(3)	1.361(8)
C(6) - C(7)	1.392(5)	C(6) - C(7)	1.387(3)	C(6) - H(6)	0.95	C(6) - C(7)	1.384(5	C(6) - C(7)	1.386(8)	C(6) - C(7)	1.387(2	C(14) - C(Q)	1.386(7)	C(6) - H(6)	0.95	C(6) - C(7)	1.390(1
C(6) - C(11)	1.398(4)	C(6) - C(11)	1.402(3	C(7) - C(8)	1.471(3	C(6) - C(11)	1.399(5)	C(6) - C(11)	1.413(8	C(6) - C(11)	1.399(2)	C(14) - H(14)	0.931	C(7) - C(8)	1.458(6)	C(6) - C(11)	1.405(8
C(7) - C(8)	1.395(4)	C(7) - C(8)	1.395(3)	C(8) - N(2)	1.369(3)	C(7) - C(8)	1.395(5)	C(7) - C(8)	1.339(9)	C(7) - C(8)	1.398(2)	C(15) - C(X)	1.387(7)	C(8) - N(2)	1.383(5)	C(7) - C(8)	1.380(1
C(7) - H(7)	0.95	C(7) - H(7)	0.95	C(8) - N(3)	1.339(3)	C(7) - H(7)	0.95	C(7) - H(7)	0.93	C(7) - H(7)	0.95	C(15) - H(15)	0.931	C(8) - N(3)	1.333(6)	C(7) - H(7)	0.95
C(8) - C(9)	1.401(5	C(8) - C(9)	1.400(3	C(9) - C(10)	1.466(3)	C(8) - C(9)	1.399(6)	C(8) - C(9)	1.420(1	C(8) - C(9)	1.401(2	C(16) - H(16)	0.931	C(9) - C(10)	1.475(6)	C(8) - C(9)	1.420(1
C(8) - H(8)	0.95	C(8) - H(8)	0.95	C(9) - N(3)	1.340(3	C(8) - H(8)	0.95	C(8) - H(8)	0.93	C(8) - H(8)	0.95	C(17) - C(17)	1.389(6)	C(9) - N(3)	1.342(6	C(8) - H(8)	0.951
C(9) - C(10)	1.389(5)	C(9) - C(10)	1.939(3)	C(9) - N(4)	1.371(3	C(9) - C(10)	1.390(5	C(9) - C(10)	1.390(1	C(9) - C(10)	1.396(2	C(17) - C(T)	1.379(7)	C(9) - N(4)	1.362(6	C(9) - C(10)	1.360(1
C(9) - H(9)	0.95	C(9) - H(9)	0.95	C(10) - C(11)	1.390(3	C(9) - H(9)	0.95	C(9) - H(9)	0.93	C(9) - H(9)	0.95	C(17) - H(17)	0.93	C(10) - C(11)	1.387(6	C(9) - H(9)	0.951
C(10) - C(11)	1.389(5	C(10) - C(11)	1.386(3	C(10) - C(15)	1.395(3	C(10) - C(11)	1.387(5	C(10) - C(11)	1.376(9	C(10) - C(11)	1.385(2	C(18) - C(18)	1.398(6)	C(10) - C(15)	1.395(6	C(10) - C(11)	1.390(1
C(10) - H(10)	0.95	C(10) - H(10)	0.95	C(11) - C(12)	1.390(3	C(10) - H(10)	0.95	C(10) - H(10)	0.929	C(10) - H(10)	0.95	C(18) - C(Z)	1.384(8	C(11) - C(12)	1.392(6	C(10) - H(10)	0.95
C(11) - C(12)	1.469(4	C(11) - C(12)	1.468(3	C(11) - H(11)	0.95	C(11) - C(12)	1.462(5	C(11) - C(12)	1.476(8	C(11) - C(12)	1.467(2	C(18) - H(18)	0.93	C(11) - H(11)	0.95	C(11) - C(12)	1.460(1
C(12) -	1.367(4	C(12) -	1.371(2	C(12) -	1.394(4	C(12) -	1.375(4	C(12) -	1.360(6	C(12) -	1.371(2	C(D) -	1.385(6	C(12) -	1.402(6	C(12) -	1.386(8

N(3))	N(3))	C(13))	N(3))	N(3))	N(3))	C(D))	C(13))	N(3))
C(12) - N(4)	1.340(4)	C(12) - N(4)	1.335(2	C(12) - H(12)	0.95	C(12) - N(4)	1.334(4)	C(12) - N(4)	1.335(6	C(12) - N(4)	1.336(2	C(D) - C(N)	1.471(7	C(12) - H(12)	0.95	C(12) - N(4)	1.325(8
C(13) - C(14)	1.468(4)	C(13) - C(14)	1.466(3)	C(13) - C(14)	1.388(4)	C(13) - C(14)	1.469(4)	C(13) - C(14)	1.466(7)	C(13) - C(14)	1.467(2)	C(D) - C(Z)	1.389(8)	C(13) - C(14)	1.394(6)	C(13) - C(14)	1.464(8)
C(13) - N(4)	1.337(4)	C(13) - N(4)	1.339(2	C(13) - H(13)	0.95	C(13) - N(4)	1.333(4)	C(13) - N(4)	1.337(8	C(13) - N(4)	1.335(2	C(E) - C(G)	1.386(7)	C(13) - H(13)	0.95	C(13) - N(4)	1.347(8)
C(13) - N(5)	1.366	C(13) - N(5)	1.370	C(14) - C(15)	1.381(3	C(13) - N(5)	1.368	C(13) - N(5)	1.376	C(13) - N(5)	1.371	C(E) - C(S)	1.404(7	C(14) - C(15)	1.388(6	C(13) - N(5)	1.367
C(14) - C(15)	1.390(4)	C(14) - C(15)	1.392(3	C(14) - H(14)	0.95	C(14) - C(14)	1.406(5	C(14) - C(14)	1.387(6	C(14) - C(14)	1.405(2	C(E) - C(O)	1.458(7	C(14) - H(14)	0.95	C(14) - C(14)	1.420(1
C(14) - C(14)	1.393(5	C(14) - C(14)	1.405(3	C(15) - C(16)	1.468(3	C(14) - C(15)	1.389(5	C(14) - C(15)	1.393(8	C(14) - C(15)	1.391(2	C(F) - C(R)	1.457(7	C(15) - C(16)	1.465(6)	C(14) - C(15)	1.393(9)
C(15) - C(16)	1.401(5	C(15) - C(16)	1.391(3	C(16) - N(4)	1.366(3	C(15) - C(16)	1.387(5	C(15) - C(16)	1.388(8	C(15) - C(16)	1.397(2	C(F) - N(3)	1.381(6	C(16) – N(4)	1.373(5	C(15) - C(16)	1.375(9)
C(15) - H(15)	0.95	C(15) - H(15)	0.95	C(16) - N(5)	1.335	C(15) - H(15)	0.95	C(15) - H(15)	0.931	C(15) - H(15)	0.95	C(F) - N(A)	1.339(6	C(16) - (N(5)	1.338	C(15) - H(15)	0.949
C(16) - C(16)	1.396(5)	C(16) - C(16)	1.399(4)	C(17) - C(18)	1.467(3	C(16) - C(16)	1.398(6	C(16) - C(16)	1.390(1	C(16) - C(16)	1.399(3)	C(G) - H(G)	0.93	C(17) - C(18)	1.470(6)	C(16) - C(16)	1.380(1
C(16) - H(16)	0.95	C(16) - H(16)	0.95	C(17) - N(6)	1.370	C(16) - H(16)	0.95	C(16) - H(16)	0.93	C(16) - H(16)	0.95	C(H) - C(J)	1.460(7	C(17) - N(6)	1.361	C(16) - H(16)	0.949
C(17) - C(18)	1.465(4	C(17) - C(18)	1.468(2	C(17) - N(7)	1.334(3	C(17) - C(18)	1.470(5	C(17) - C(18)	1.460(7	C(17) - C(18)	1.469(2	C(H) - C(M)	1.398(7	C(17) - N(7)	1.337(6	C(17) - C(18)	1.463(9
C(17) - N(6)	1.338	C(17) - N(6)	1.374(2	C(18) - C(18)	1.398(4	C(17) - N(6)	1.326	C(17) - N(6)	1.323	C(17) - N(6)	1.334(2	C(H) - C(U)	1.393(7	C(18) - C(18)	1.394(6)	C(17) - N(6)	1.323
C(17) - N(7)	1.368(4	C(17) - N(10)	1.333(2	C(18) - C(19)	1.395(3	C(17) - N(7)	1.365(4	C(17) - N(7)	1.369(3	C(17) - N(7)	1.372(2	C(J) - N(4)	1.323	C(18) - C(19)	1.394(6	C(17) - N(7)	1.389(8
C(18) - C(19)	1.389(4	C(18) - C(19)	1.389(3	C(19) - C(20)	1.389(4	C(18) - C(19)	1.389(4	C(18) - C(19)	1.394(7	C(18) - C(19)	1.392(2	C(J) - N(7)	1.377(6	C(19) - C(20)	1.391(6)	C(18) - C(19)	1.393(8

C(18) - C(23)	1.397(4	C(18) - C(23)	1.402(3	C(19) - H(19)	0.95	C(18) - C(23)	1.399(4	C(18) - C(23)	1.391(7	C(18) - C(23)	1.399(2	C(I) – C(L)	1.458(7	C(19) - H(19)	0.95	C(18) - C(23)	1.395(9
C(19) - C(20)	1.389(5)	C(19) - C(20)	1.390(3	C(20) - C(20)	1.392(4	C(19) - C(20)	1.389(5	C(19) - C(20)	1.370(1	C(19) - C(20)	1.392(2	C(I) - C(I)	1.385(6)	C(20) - C(20)	1.395(6)	C(19) - C(20)	1.370(1
C(19) - H(19)	0.95	C(19) - H(19)	0.95	C(20) - H(20)	0.95	C(19) - H(19)	0.95	C(19) - H(19)	0.931	C(19) - H(19)	0.95	C(I) - C(T)	1.394(7	C(20) - H(20)	0.95	C(19) - H(19)	0.95
C(20) - C(21)	1.399(5)	C(20) - C(21)	1.402(3	C(21) - C(22)	1.465(3	C(20) - C(21)	1.395(5)	C(20) - C(21)	1.389(9	C(20) - C(21)	1.400(2	C(K) - C(S)	1.379(7	C(21) - C(22)	1.461(6	C(20) - C(21)	1.405(9
C(20) - H(20)	0.95	C(20) - H(20)	0.95	C(21) - N(7)	1.332(3)	C(20) - H(20)	0.95	C(20) - H(20)	0.931	C(20) - H(20)	0.95	C(K) - H(K)	0.93	C(21) - N(7)	1.343(6)	C(20) - H(20)	0.95
C(21) - C(22)	1.392(4	C(21) - C(22)	1.395(3)	C(21) - N(8)	1.374(3)	C(21) - C(22)	1.389(5)	C(21) - C(22)	1.375(8)	C(21) - C(22)	1.393(2	C(L) - N(5)	1.381	C(21) - N(8)	1.373(6)	C(21) - C(22)	1.412(9)
C(21) - H(21)	0.95	C(21) - H(21)	0.95	C(22) - C(23)	1.388(4	C(21) - H(21)	0.95	C(21) - H(21)	0.931	C(21) - H(21)	0.95	C(L) - N(A)	1.336(6)	C(22) - C(23)	1.391(6)	C(21) - H(21)	0.949
C(22) - C(23)	1.392(5)	C(22) - C(23)	1.385(3)	C(22) - C(27)	1.398(4)	C(22) - C(23)	1.389(5)	C(22) - C(23)	1.391(7	C(22) - C(23)	1.390(2	C(M) - C(W)	1.465(7)	C(22) - C(27)	1.396(6)	C(22) - C(23)	1.380(1
C(22) - H(22)	0.95	C(22) - H(22)	0.95	C(23) - C(24)	1.389(4)	C(22) - H(22)	0.95	C(22) - H(22)	0.93	C(22) - H(22)	0.95	C(M) - C(X)	1.385(7)	C(23) - C(24)	1.397(7)	C(22) - H(22)	0.951
C(23) - C(24)	1.468(4)	C(23) - C(24)	1.465(3)	C(23) - H(23)	0.95	C(23) - C(24)	1.464(4)	C(23) - C(24)	1.461(7)	C(23) - C(24)	1.461(2	C(N) - N(8)	1.366	C(23) - H(23)	0.95	C(23) - C(24)	1.469(9)
C(24) - N(7)	1.361(4	C(24) - N(6)	1.369(2	C(24) - C(25)	1.399(4)	C(24) - N(7)	1.367(4)	C(24) - N(7)	1.372(6	C(24) - N(7)	1.369(2	C(N) - N(30)	1.337(6	C(24) - C(25)	1.413(7	C(24) - N(7)	1.356(8)
C(24) - N(8)	1.347(4	C(24) - N(7)	1.338	C(24) - H(24)	0.95	C(24) - N(8)	1.339(4	C(24) - N(8)	1.336(6	C(24) - N(8)	1.335	C(O) - N(6)	1.330(6	C(24) - H(24)	0.951	C(24) - N(8)	1.343(8
C(25) - C(26)	1.459(4)	C(25) - C(26)	1.463(3	C(25) - C(26)	1.391(4	C(25) – C(26)	1.468(4	C(25) - C(26)	1.459(7	C(25) - C(26)	1.463(2	C(O) - N(9)	1.380(6	C(25) - C(26)	1.382(7	C(25) - C(26)	1.471(9
C(25) - N(8)	1.336(4	C(25) - N(8)	1.338	C(25) - H(25)	0.95	C(25) - N(8)	1.336(4	C(25) - N(8)	1.333(6	C(25) - N(9)	1.334	C(P) - C(Y)	1.463(7	C(25) - H(25)	0.95	C(25) - N(8)	1.364(8
C(25) - N(9)	1.373(4	C(25) - N(9)	1.368(2	C(26) - C(27)	1.386(4	C(25) - N(9)	1.370(4	C(25) - N(9)	1.366(6	C(25) - N(10)	1.371(2	C(P) - N(3)	1.367(6)	C(26) - C(27)	1.388(6	C(25) - N(9)	1.361(8
C(26) -	1.389(4	C(26) -	1.391(3	C(26) -	0.95	C(26) -	1.385(5	C(26) -	1.385(7	C(26) -	1.392(2	C(P) -	1.338(7	C(26) -	0.95	C(26) -	1.390(1

C(27))	C(27))	H(26)		C(27))	C(27))	C(27))	N(30))	H(26)		C(27))
C(26) - C(31)	1.396(4)	C(26) - C(31)	1.401(3	C(27) - C(28)	1.464(3	C(26) - C(31)	1.398(4	C(26) - C(31)	1.392(7	C(26) - C(31)	1.401(2	C(Q) - C(Y)	1.385(7)	C(27) - C(28)	1.464(6)	C(26) - C(31)	1.396(9)
C(27) - C(28)	1.393(4	C(27) - C(28)	1.391(3	C(28) - N(8)	1.366(3	C(27) - C(28)	1.396(5	C(27) - C(28)	1.381(8	C(27) - C(28)	1.392(2	C(Q) - H(Q)	0.93	C(28) - N(8)	1.378(6)	C(27) - C(28)	1.389(8)
C(27) - H(27)	0.95	C(27) - H(27)	0.95	C(28) - N(9)	1.342(3	C(27) - H(27)	0.95	C(27) - H(27)	0.93	C(27) - C(28)	0.95	C(R) - C(Y)	1.399(7)	C(28) - N(9)	1.338(6	C(27) - H(27)	0.949
C(28) - C(29)	1.398(4	C(28) - C(29)	1.402(3	C(29) - C(30)	1.468(3)	C(28) - C(29)	1.408(5	C(28) - C(29)	1.387(9)	C(28) - C(29)	1.403(2	C(S) - C(V)	1.454(7	C(29) - C(30)	1.470(6)	C(28) - C(29)	1.399(9)
C(28) - H(28)	0.95	C(28) - H(28)	0.95	C(29) - N(9)	1.340(3	C(28) - H(28)	0.95	C(28) - H(28)	0.93	C(28) - H(28)	0.95	C(T) - H(T)	0.931	C(29) - N(9)	1.333(6	C(28) - H(28)	0.949
C(29) - C(30)	1.389(5)	C(29) - C(30)	1.398(3)	C(29) - N(10)	1.368	C(29) - C(30)	1.390(5)	C(29) - C(30)	1.378(8)	C(29) - C(30)	1.396(2)	C(U) - H(U)	0.93	C(29) - N(10)	1.375	C(29) - C(30)	1.390(1)
C(29) - H(29)	0.95	C(29) - H(29)	0.95	C(30) - C(30)	1.398(4)	C(29) - H(29)	0.95	C(29) - H(29)	0.93	C(29) - H(29)	0.95	C(V) - N(9)	1.369(6)	C(30) - C(30)	1.402(6)	C(29) - H(29)	0.95
C(30) - C(31)	1.383(4)	C(30) - C(31)	1.391(3)	C(30) - C(31)	1.384(4	C(30) - C(31)	1.392(4	C(30) - C(31)	1.381(7)	C(30) - C(31)	1.391(2)	C(V) - N(40)	1.330	C(30) - C(31)	1.397(6)	C(30) - C(31)	1.388(8)
C(30) - H(30)	0.95	C(30) - H(30)	0.95	C(31) - C(32)	1.395(4)	C(30) - H(30)	0.95	C(30) - H(30)	0.93	C(30) - H(30)	0.95	C(W) - N(6)	1.354(6)	C(31) - C(32)	1.394(6)	C(30) - H(30)	0.949
C(31) - C(32)	1.460(4	C(31) - C(32)	1.468(3)	C(31) - H(31)	0.95	C(31) - C(32)	1.461(5)	C(31) - C(32)	1.466(7)	C(31) - C(32)	1.469(2)	C(W) - N(7)	1.355(6)	C(31) - H(31)	0.95	C(31) - C(32)	1.455(9)
C(32) - N(9)	1.371(4	C(32) - N(9)	1.369(2	C(32) - C(32)	1.384(4	C(32) - N(9)	1.369(4)	C(32) - N(9)	1.364(6)	C(32) - N(6)	1.338(2	C(X) - H(X)	0.93	C(32) - C(32)	1.395(6)	C(32) - N(9)	1.392(8)
C(32) - N(10)	1.336	C(32) - N(10)	1.342(2	C(32) - H(32)	0.95	C(32) - N(10)	1.339	C(32) - N(10)	1.333	C(32) - N(10)	1.368(2	C(Z) - H(Z)	0.93	C32 - H(32)	0.951	C(32) - N(10)	1.317
C(33) - Cl(1)	1.769	C(33) - Cl(1)	1.768	C(33) - Cl(1)	1.768	C(33) - Cl(1)	1.769	C33 - Cl(1)	1.702	C(33) - Cl(2)	1.768	C(19) - Cl(1)	1.765	C(33) - Cl(1)	1.772	C(33) - Cl	1.763
C(33) - H(33)	0.99	C(33) - H(33)	0.97	C(33) - H(33)	0.99	C(19) - H(19)	0.971	C(33) - H(33)	0.99	C(33) - H(33)	0.99						