Supporting information

Effect of Structural Features on the Stability and Bactericidal Potential of Two Cadmium Coordination Polymers

Sajjad Soltani¹, Kamran Akhbari^{1,*}, Jonathan White²

¹School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
Tel.: +98 21 61113734; fax: +98 21 66495291.
E-mail address: akhbari.k@khayam.ut.ac.ir (K. Akhbari)

²School of Chemistry and Bio21 Institute, The University of Melbourne, VIC 3010, Australia

compound	1	2
Empirical formula	C ₂₂ H ₂₈ Cd N ₂ O ₅	C ₂₀ H ₁₈ Cd N ₂ O ₄
Formula weight	512.86	462.76
Temperature	100.0(2) K	100.0(2) K
Wavelength	0.710918Å	0.710913 Å
Crystal system	Orthorhombic	Triclinic
Space group	P n m a	$P\overline{1}$
Unit cell dimensions	a = 14.727(3) Å	a = 9.3060(19)
	<i>b</i> =23.437(5) Å	b = 10.760(2)
	c = 5.9870(12) Å	c = 10.904(2)
	$\alpha = \beta = \gamma = 90^{\circ}$	$\alpha = 114.49(3)$
		$\beta = 104.24(3)$
		$\gamma = 103.92(3)$
Volume	2066.5(7) Å ³	887.5(4) Å ³
Ζ	4	2
Density (calculated)	1.648 g.cm ⁻³	1.732 g.cm ⁻³
Absorption coefficient	1.094 mm ⁻¹	1.260 mm ⁻¹
F(000)	1048	464
Theta range for data collection	2.766 to 32.416°.	2.2 to 32.2°.
Index ranges	$-18 \le h \le 18$	$-12 \le h \le 12$
-	$-31 \le k \le 31$	$-14 \le k \le 14$
	$-8 \le l \le 8$	-14≤ <i>l</i> ≤ 14
Reflections collected	34660	16141
Independent reflections	3279 [R(int) = 0.0630]	4593 [R(int) =0.0384]
Data / restraints / parameters	3279 / 1 / 148	4593 / 0/ 246
Goodness-of-fit on F ²	1.113	1.114
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	$R_1 = 0.0461$	R ₁ =0.0361
	$wR_2 = 0.1247$	$wR_2 = 0.0997$
R Indices (all data)	$R_1 = 0.0471$	0.0370
· · · · · ·	$wR_2 = 0.1255$	0.1005

Table S1. Crystal data and structure refinement for compound $[Cd(Phac)_2(Dabco)(H_2O)]_n$ (1) and $[Cd(Phac)(4,4'-Bpy)(OAc)]_n$ (2).

1	Bond lengths
O(1)-Cd(1)	2.338(2)
O(2)-Cd(1)	2.487(2)
O(3)-Cd(1)	2.252(3)
N(1)-Cd(1)	2.378(3)
N(2)-Cd(1)	2.401(3)
2	Bond lengths
N(1)-Cd(1)	2.324(2)
N(2)-Cd(1)	2.341(2)
O(3)-Cd(1)	2.363(2)
O(1)-Cd(1)	2.375(1)
O(1)-Cd(1)	2.382(2)
O(4)-Cd(1)	2.396(2)
	2 476(2)
O(2)-Cd(1)	2.4/0(2)

Table S2. Selected bond lengths [Å] for 1 and 2.

Table S3. Selected angles [$^{\circ}$] for 1 and 2.

1	Angles	2	Angles
O(3)-Cd(1)-O(1)	133.66(6)	N(1)-Cd(1)-N(2)	169.19(8)
O(1)-Cd(1)-O(1)	91.78(11)	O(3)-Cd(1)-N(1)	89.75(8)
O(3)-Cd(1)-N(1)	96.20(10)	O(3)-Cd(1)-N(2)	87.85(8)
O(1)-Cd(1)-N(1)	101.30(6)	N(1)-Cd(1)-O(1)	96.49(7)
O(3)-Cd(1)-N(2)	88.11(10)	N(2)-Cd(1)-O(1)	91.90(7)
O(1)-Cd(1)-N(2)	86.26(6)	O(3)-Cd(1)-O(1)	141.72(7)
N(1)-Cd(1)-N(2)	175.70(9)	N(1)-Cd(1)-O(1)	90.46(8)
O(3)-Cd(1)-O(2)	80.26(6)	N(2)-Cd(1)-O(1)	86.20(8)
O(1)-Cd(1)-O(2)	53.88(8)	O(3)-Cd(1)-O(1)	149.03(7)
O(1)-Cd(1)-O(2)	145.66(8)	O(1)-Cd(1)-O(1)	68.91(8)
N(1)-Cd(1)-O(2)	90.25(4)	N(1)-Cd(1)-O(4)	97.50(9)
N(2)-Cd(1)-O(2)	90.49(4)	N(2)-Cd(1)-O(4)	89.80(9)
O(2)-Cd(1)-O(2)	160.45(12)	O(3)-Cd(1)-O(4)	55.33(7)
O(3)-Cd(1)-C(8)	106.79(6)	O(1)-Cd(1)-O(4)	86.39(7)
O(1)-Cd(1)-C(8)	27.06(8)	O(1)-Cd(1)-O(4)	154.79(7)
	118.82(9)	N(1)-Cd(1)-O(2)	82.60(8)
O(1)-Cd(1)-C(8)	91.38(5)	N(2)-Cd(1)-O(2)	87.14(8)
N(1)-Cd(1)-C(8)	87.37(5)	O(3)-Cd(1)-O(2)	95.53(7)
N(2)-Cd(1)-C(8)	26.84(10)	O(1)-Cd(1)-O(2)	122.70(7)
O(2)-Cd(1)-C(8)	172.55(8)	O(1)-Cd(1)-O(2)	53.86(6)
O(2)-Cd(1)-C(8)		O(4)-Cd(1)-O(2)	150.81(6)

Table S4	Hydrogen	bonds	for 1	[Å and °]
1 abic 54.	ityulogen	UUIIUS	101 1	A and J.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
C(10)-H(10A)O(1)#4	0.97	2.62	3.256(4)	123.0	
C(10)-H(10B)O(1)#2	0.97	2.62	3.256(4)	123.0	
O(3)-H(3A)O(1)#5	0.827(10)	1.926(17)	2.702(3)	156(3)	
O(3)-H(3A)O(2)	0.827(10)	2.94(4)	3.060(3)	91(3)	
C(10)-H(10A)O(1)#4	0.97	2.62	3.256(4)	123.0	
C(10)-H(10B)O(1)#2	0.97	2.62	3.256(4)	123.0	
O(3)-H(3A)O(1)#5	0.827(10)	1.926(17)	2.702(3)	156(3)	
O(3)-H(3A)O(2)	0.827(10)	2.94(4)	3.060(3)	91(3)	

Symmetry transformations used to generate equivalent atoms:

#1 x,-y+1/2,z #2 x+1/2,y,-z+1/2 #3 x-1/2,y,-z+1/2

#4 x+1/2,-y+1/2,-z+1/2 #5 x,y,z-1

Figure S1. A thermal ellipsoid model of 1. The thermal ellipsoids are set at a 50% probability level.

Figure S2. Expansion of 1 structure by hydrogen bonds.

Figure S3. A thermal ellipsoid model of 2. The thermal ellipsoids are set at a 50% probability level.

Figure S4. C-H/ π (green dotted line) and off-set π - π stacking intermolecular interactions (red dotted line) in **2**.

b)

Figure S5. FT-IR spectra of compounds.

Figure S6. Magnified SEM images of 1 (a), 1-M (b), 1-S (c), 2 (d) and 2-S (e).

Figure S7. TGA-DTG curves of a) 1, and b) 2.

Figure S8. XRPD patterns of a) **1**, b) **2** after incubation for 24 hours. **2** after the treatment has been transformed by structural change into new phase (**2'**) with $[Cd_2(4,4'-Bpy)_2(Phac)_4]_n.0.25(H_2O)$ formula.

Figure S9. Fragment of the 2' structure.

Figure S10. Replacement of phenylacetate ligand instead of acetate ligand in **2'** leads to network expansion through hydrogen bonds and more electrostatic interactions.

Figure S11. The shielding effect created around the central cadmium due to phenylacetate ligands in 1.