Electronic Supplementary Information

Tunable Metal-Organic Framework Nanoarrays on Carbon Cloth Constructed by a Rational Self-Sacrificing Template for Efficient and Robust Oxygen Evolution Reaction

Chong Lina, Xiao Hea, Huiqin Lib*, Junjie Zoua, Miaoling Quec, Jingyang Tiana*, Yong Qiana*

a Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang, 330013, P. R. China.

b Department of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Shaanxi Key Laboratory of phytochemistry, Baoji, 721013, P. R. China.

c School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China.

Corresponding author: huiqinli@yeah.net (Prof. Li); jytian@ecut.edu.cn (Dr. Tian); yqian@ecut.edu.cn (Prof. Qian).

\textbf{Figure S1}. SEM images of Ni(OH)\textsubscript{2} NAs/CC.

\textbf{Figure S2}. XRD of Ni(OH)\textsubscript{2} NAs/CC.
Figure S3. SEM images of Ni-MOF-74/CC without the template of Ni(OH)$_2$ NAs/CC.

Figure S4. XRD patterns of (a) Ni-BDC NAs/CC and (b) Ni-BTC NAs/CC, respectively.

Figure S5. SEM images of (a, b) Ni-BDC NAs/CC and (c, d) Ni-BTC NAs/CC,
respectively.

Figure S6. SEM images of (a) Ni-BDC/CC and (b) Ni-BTC/CC without the template of Ni(OH)$_2$ NAs/CC, respectively.

Figure S7. SEM image of Ni-MOF-74 NAs/CC-1 prepared with the addition of HAC (pH=3.06).

Figure S8. XRD pattern of Ni-MOF-74 NAs/CC-3 prepared with the addition of HMT (pH=3.45).
Figure S9. SEM images of Ni-MOF-74 NAs/CC-3 prepared with the addition of HMT (pH=3.45).

Figure S10. SEM images of Ni-MOF-74 NAs/CC-3 prepared under different reaction time (a-2h, b-4h, c-8h and d-24h).
Figure S11. XRD patterns of Ni/Ni-MOF-74 NAs/CC (a) and NiO/Ni-MOF-74 NAs/CC (b), respectively.

Figure S12. SEM images of (a, b) Ni/Ni-MOF-74 NAs/CC and (c, d) NiO/Ni-MOF-74 NAs/CC, respectively.

Figure S13. SEM images of Co(OH)$_2$ NAs/CC.
Figure S14. SEM images of Co$_{0.5}$Ni$_{0.5}$(OH)$_2$ NAs/CC.

Figure S15. XRD patterns of Co-MOF-74 NAs/CC, Ni-MOF-74 NAs/CC and Co$_{0.5}$Ni$_{0.5}$-MOF-74/CC, respectively.

Figure S16. SEM images of Co-MOF-74 NAs/CC.
Figure S17. SEM images of Co$_{0.5}$Ni$_{0.5}$-MOF-74 NAs/CC.

Figure S18. TEM images of Co(OH)$_2$.

Figure S19. TEM images of Ni(OH)$_2$.

Figure S20. TEM images of Co$_{0.5}$Ni$_{0.5}$(OH)$_2$.
Figure S21. TEM images of Co-MOF-74.

Figure S22. TEM images of Ni-MOF-74.

Figure S23. EDS plot of Co$_{0.5}$Ni$_{0.5}$-MOF-74.
Figure S24. Full XPS spectra of Co/Ni 2p.

Figure S25. LSV (a) and CP (b) curves of Ni-MOF-74/CC and Ni-MOF-74 NAs/CC, respectively.

Figure S26. LSV (a) and CP (b) curves of Ni-BDC/CC and Ni-BDC NAs/CC,
respectively.

Figure S27. (a) LSV and (b) CP curves of Ni-BTC/CC and Ni-BTC NAs/CC, respectively.

Figure S28. CVs of (a) Ni-MOF-74/CC and (b) Ni-MOF-74 NAs/CC with different scan rates, respectively. (c) The calculated differential current vs. scan rates at 0.049 V vs. RHE.
Figure S29. CVs of (a) Ni-BDC/CC and (b) Ni-BDC NAs/CC with different scan rates, respectively. (c) The calculated differential current vs. scan rates at 0.049 V vs. RHE.

Figure S30. CVs of (a) Ni-BTC/CC and (b) Ni-BTC NAs/CC with different scan rates, respectively. (c) The calculated differential current vs. scan rates at 0.049 V vs. RHE.
Figure S31. (a) LSV curves of Ni-MOF-74 NAs/CC-A (A=1, 2, 3 and 4).

Figure S32. CVs of (a) Co-MOF-74 NAs/CC, (b) Ni-MOF-74 NAs/CC and (c) Co$_{0.5}$Ni$_{0.5}$-MOF-74 NAs/CC with different scan rates, respectively.
Figure S33. SEM images of Co-MOF-74 NAs/CC (a, b), Co-MOF-74 NAs/CC (c, d), Co-MOF-74 NAs/CC (e, f) after CP tests, respectively.

Figure S34. XPS of (a) Co 2p\textsubscript{3/2} in Co-MOF NAs/CC, (b) Co 2p\textsubscript{3/2} in Co\textsubscript{0.5}Ni\textsubscript{0.5}-MOF-74 NAs/CC, (c) Ni 2p\textsubscript{3/2} in Ni-MOF-74 NAs/CC, (d) Ni 2p\textsubscript{3/2} in Co\textsubscript{0.5}Ni\textsubscript{0.5}-MOF-74 NAs/CC after CP tests, respectively.
Table S1. Comparison of water oxidation activity in the electrolyte of 1 M KOH.

<table>
<thead>
<tr>
<th>Materials</th>
<th>electrolyte</th>
<th>Overpotential (mV)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoNi-MOF-74 NAs/CC</td>
<td>1 M KOH</td>
<td>$\eta_{10}/244$</td>
<td>This work</td>
</tr>
<tr>
<td>Fe-Ni$_3$S$_2$/NF1</td>
<td>1 M NaOH</td>
<td>$\eta_{10}/253$</td>
<td>[1]</td>
</tr>
<tr>
<td>NiFe LDH/NF</td>
<td>1 M KOH</td>
<td>$\eta_{10}/269$</td>
<td>[2]</td>
</tr>
<tr>
<td>NiCo LDH/NG2</td>
<td>0.1 M KOH</td>
<td>$\eta_{145.3}/400$</td>
<td>[3]</td>
</tr>
<tr>
<td>NiCo LDH/NF</td>
<td>1 M KOH</td>
<td>$\eta_{10}/271$</td>
<td>[4]</td>
</tr>
<tr>
<td>NiV LDH</td>
<td>1 M KOH</td>
<td>$\eta_{10}/271$</td>
<td>[5]</td>
</tr>
<tr>
<td>NiCr LDH/NF</td>
<td>1 M KOH</td>
<td>$\eta_{10}/319$</td>
<td>[6]</td>
</tr>
<tr>
<td>NiMn LDH/rGO3</td>
<td>1 M KOH</td>
<td>$\eta_{10}/260$</td>
<td>[7]</td>
</tr>
<tr>
<td>NiMn LDH</td>
<td>1 M KOH</td>
<td>$\eta_{10}/350$</td>
<td>[8]</td>
</tr>
<tr>
<td>NiMn LDH NS4</td>
<td>0.1 M NaOH</td>
<td>$\eta_{10}/390$</td>
<td>[9]</td>
</tr>
<tr>
<td>nNiFe LDH/NGF</td>
<td>0.1 M KOH</td>
<td>$\eta_{10}/337$</td>
<td>[10]</td>
</tr>
<tr>
<td>NiFe LDH/NF</td>
<td>0.1 M KOH</td>
<td>$\eta_{10}/280$</td>
<td>[11]</td>
</tr>
<tr>
<td>NiCu LDH/CC5</td>
<td>1 M KOH</td>
<td>$\eta_{10}/290$</td>
<td>[12]</td>
</tr>
<tr>
<td>NiZn LDH/N-rGO</td>
<td>1 M KOH</td>
<td>$\eta_{10}/290$</td>
<td>[13]</td>
</tr>
<tr>
<td>NiZn LDH nanocage</td>
<td>1 M KOH</td>
<td>$\eta_{10}/290$</td>
<td>[14]</td>
</tr>
<tr>
<td>NiFe-MOF/NF</td>
<td>1 M KOH</td>
<td>$\eta_{10}/240$</td>
<td>[15]</td>
</tr>
<tr>
<td>NiO/Ni-MOF/NF</td>
<td>1 M KOH</td>
<td>$\eta_{50}/250$</td>
<td>[16]</td>
</tr>
<tr>
<td>Fe$_2$O$_3$/Ni-MOF-74/CC</td>
<td>1 M KOH</td>
<td>$\eta_{10}/264$</td>
<td>[17]</td>
</tr>
<tr>
<td>Fe(OH)$_3$/Co-MOF-74/CC</td>
<td>1 M KOH</td>
<td>$\eta_{10}/292$</td>
<td>[18]</td>
</tr>
</tbody>
</table>

1, NF, Ni foam; 2, NG, N-doped graphene; 3, rGO, reduced graphene oxide; 4, NS, nanosheet; 5, CC, carbon cloth;

References

