ELECTRONIC SUPPLEMENTARY INFORMATION (ESI) for the paper:

Cyclodextrin complexes of the anticonvulsant agent valproic acid.

A.I. Vicatos and M. R. Caira

CONTENTS

Fig. S1 The ¹H NMR spectrum of α -CD·VAL.

Table S1 The ¹H NMR spectral analysis of α -CD·VAL.

Fig. S2 The ¹H NMR spectrum of β -CD·VAL.

Table S2 The ¹H NMR spectral analysis of β -CD·VAL.

Fig. S3 The ¹H NMR spectrum of γ -CD·VAL.

Table S3 The ¹H NMR spectral analysis of γ -CD·VAL.

Fig. S4 The ¹H NMR spectrum of DMB·VAL.

Table S4 The ¹H NMR spectral analysis of DMB·VAL.

Fig. S5 The ¹H NMR spectrum of TMB·VAL.

Table S5 The ¹H NMR spectral analysis of TMB·VAL.

Fig. S6 The ¹H NMR spectrum of TMA·VAL.

Table S6 The ¹H NMR spectral analysis of TMA·VAL.

Fig. S7 Representative TGA curve for α -CD·VAL (n = 2) [blue] and a representative DSC trace for α -CD·VAL (n = 2) [red].

Fig. S8 Representative TGA curve for β -CD·VAL (n = 2) [blue] and a DSC curve for β -CD·VAL (n = 2) [red].

Fig. S9 Representative TGA curve for γ -CD·VAL (n = 2) [blue] and a DSC curve for γ -CD·VAL (n = 2) [red].

Fig. S10 Representative TGA curve for DMB·VAL (n = 2) [blue] and a DSC curve for DMB·VAL (n = 2) [red].

Fig. S11 Representative TGA curve for TMB·VAL (n = 2) [blue] and a representative DSC curve for TMB·VAL (n = 3) [red].

Fig. S12 Representative TGA curve for TMA·VAL (n = 2) [blue] and a representative DSC curve for TMA·VAL (n = 2) [red].

 Table S7
 TGA and DSC measurements.

Fig. S13 FT-IR shift of the C=O band on inclusion of VAL in α -CD.

Fig. S14 FT-IR shift of the C=O band on inclusion of VAL in β -CD.

Fig. S15 FT-IR shift of the C=O band on inclusion of VAL in γ -CD.

Fig. S16 FT-IR shift of the C=O band on inclusion of VAL in DMB.

Fig. S17 FT-IR shift of the C=O band on inclusion of VAL in TMB.

Fig. S18 FT-IR shift of the C=O band on inclusion of VAL in TMA.

Fig. S19 PXRD patterns α -CD·VAL produced via co-precipitation (2:1) and kneading (2:1).

Fig. S20 PXRD patterns β -CD·VAL produced via co-precipitation (1:1) and kneading (1:1) and that of an isostructural β -CD inclusion complex crystallizing in the space group C2.

Fig. S21 The PXRD patterns of an isostructural γ -CD inclusion complex crystallizing in the space group P42₁2, and the γ -CD·VAL inclusion complex produced via co-precipitation (3:4) and kneading (3:4).

Fig. S22 PXRD patterns of the crystal form of DMB employed in this study (polymorph 1, CSD refcode QIYKEO), DMB·VAL produced via co-precipitation (1:1), and a product from kneading DMB and valproic acid.

Fig. S23 The PXRD patterns of a TMB complex crystallizing in the space group $P2_12_12_1$ (refcode XAQJII), a TMB·VAL complex (1:1) produced *via* co-precipitation, a representative isostructural TMB inclusion complex that crystallizes in $P2_12_12_1$ (refcode PAFSOE, with different unit cell data from XAQJII) and a different TMB·VAL complex produced *via* kneading.

Fig. S24 The PXRD patterns of the TMA·VAL inclusion complex produced *via* co-precipitation (1:1) and kneading (1:1).

 Table S8
 Crystal Data and Refinement Parameters.

Fig. S25 Key to atomic and glucose residue numbering for DMB(A).

Table S9 Geometrical parameters for the host molecule A in DMB·VAL.

Fig. S26 Key to atomic and glucose residue numbering for DMB(B).

Table S9 Geometrical parameters for the host molecule A in DMB·VAL.

Table S10 Geometrical parameters for the host molecule B in DMB·VAL.

Table S11 Geometrical parameters of the host molecule in TMA·VAL.

Calculations: Gravimetric solubility analysis

Fig. S1 The ¹H NMR spectrum of α -CD·VAL.

Assignment	δ (ppm)	Integration	Multiplicity	Proton representation (per molecule)	Stoichiometric ratio	Stoichiometric ratio (integer)
2 x C <u>H</u> ₃	0.845-	1.0000*	Triplet	6H	1.0000	1
(valproic acid)	0.881					
4 x C <u>H</u> ₂	1.210-	1.2802	Multiplet	8H	0.9602	1
(valproic acid)	1.523					
Ο <u>Η</u> -6 (α-CD)	4.461-	2.1548	Triplet	6H	2.1548	2
	4.489					
C <u>H</u> -1 (α-CD)	4.800-	2.1285	Doublet	6H	2.1285	2
	4.808					
O <u>H</u> -2 and O <u>H</u> -3	5.445-	4.1990	Two	12H	2.0995	2
(α-CD)	5.521		separate			
			doublets ¹			

Table S1 The ¹H NMR spectral analysis of α -CD·VAL.

¹ The ¹H NMR spectrum displays one doublet and a singlet. This singlet peak would resolve into the second doublet at a higher resolution, or if more mass was available during the experiment.

Fig. S2 The ¹H NMR spectrum of β -CD·VAL.

Assignment	δ (ppm)	Integration	Multiplicity	Proton representation	Stoichiometric ratio	Stoichiometric ratio (integer)
				(per molecule)		
2 x C <u>H</u> ₃	0.847-	1.0000*	Triplet	6H	1.0000	1
(valproic acid)	0.883					
4 x C <u>H</u> ₂	1.209-	1.3553	Multiplet	8H	1.0165	1
(valproic acid)	1.526					
Ο <u>Η</u> -6 (β-CD)	4.416-	1.2579	Triplet	7H	1.1007	1
	4.444					
C <u>H</u> -1 (β-CD)	4.832-	1.2511	Doublet	7H	1.0947	1
	4.841					
O <u>H</u> -2 and O <u>H</u> -3	5.665-	2.4941	Two	14H	1.2471	1
(β-CD)	5.717		separate			
			doublets ²			

Table S2 The ¹H NMR spectral analysis of β -CD·VAL.

² The ¹H NMR spectrum displays one doublet and a singlet. This singlet peak would resolve into the second doublet at a higher resolution, or if more mass was available during the experiment.

Fig. S3 The ¹H NMR spectrum of γ -CD·VAL.

Assignment	δ (ppm)	Integration	Multiplicity	Proton representation (per molecule)	Stoichiometric ratio	Stoichiometric ratio (integer)
$2 \times CH_3$ (valproic acid)	0.844- 0.880	1.0000*	Triplet	6Н	1.0000	4
4 x C <u>H</u> ₂ (valproic acid)	1.209- 1.520	1.3986	Multiplet	8H	1.0490	4
Ο <u>Η</u> -6 (γ-CD)	4.491- 4.518	1.0402	Triplet	8H	0.7802	3
C <u>H</u> -1 (γ-CD)	4.888- 4.898	1.0182	Doublet	8H	0.7637	3
Ο <u>Η</u> -2 and Ο <u>Η</u> -3 (γ-CD)	5.761- 5.791	2.0036	Two separate doublets ³	16H	0.7514	3

³ The ¹H NMR spectrum does not display adequate peak definition over this range; however, it is expected that these peaks would resolve into two separate doublets at a higher resolution, or if more mass was available during the experiment.

Fig. S4 The ¹H NMR spectrum of DMB·VAL.

Assignment	δ (ppm)	Integration	Multiplicity	Proton representation (per molecule)	Stoichiometric ratio	Stoichiometric ratio (integer)
2 x C <u>H</u> ₃	0.850-	1.0000*	Triplet	6H	1.0000	1
(valproic acid)	0.886					
4 x C <u>H</u> 2	1.216-	1.4367	Multiplet	8H	1.0775	1
(valproic acid)	1.532					
OC <u>H</u> 3-6 (DMB)	3.265	3.4348	Singlet	21H	0.9814	1
OC <u>H</u> 3-2 (DMB)	3.515	3.4760	Singlet	21H	0.9931	1

Table S4 The ¹H NMR spectral analysis of DMB·VAL.

Fig. S5 The ¹H NMR spectrum of TMB·VAL.

Assignment	δ (ppm)	Integration	Multiplicity	Proton representation (per molecule)	Stoichiometric ratio	Stoichiometric ratio (integer)
$2 \times CH_3$ (valproic	0.850-	1.0000*	Triplet	6H	1.0000	1
acid)	0.886					
4 x C <u>H</u> 2 (valproic	1.214-	1.4237	Multiplet	8H	1.0678	1
acid)	1.531					
OC <u>H</u> 3-6 (TMB)	3.252	3.4751	Singlet	21	0.9929	1
OC <u>H</u> 3-3 (TMB)	3.400	3.3327	Singlet	21	0.9522	1
OC <u>H</u> 3-2 (TMB)	3.507	3.5676	Singlet	21	1.0193	1

Table S5 The ¹H NMR spectral analysis of TMB·VAL.

Fig. S6 The ¹H NMR spectrum of TMA·VAL.

Assignment	δ (ppm)	Integration	Multiplicity	Proton representation (per molecule)	Stoichiometric ratio	Stoichiometric ratio (integer)
2 x C <u>H</u> ₃	0.833-	1.0000*	Triplet	6H	1.0000	1
(valproic acid)	0.869					
4 x C <u>H</u> ₂	1.210-	1.3588	Multiplet	8H	1.0191	1
(valproic acid)	1.500					
OC <u>H</u> 3-6 (TMA)	3.238	2.8340	Singlet	18H	0.9447	1
OC <u>H</u> 3-3 (TMA)	3.381	3.0160	Singlet	18H	1.0053	1
OC <u>H</u> 3-2 (TMA)	3.497	2.7943	Singlet	18H	0.9314	1
*	.1					

Table S6 The ¹H NMR spectral analysis of TMA·VAL.

Fig. S7 Representative TGA curve for α -CD·VAL (n = 2) [blue] and a representative DSC trace for α -CD·VAL (n = 2) [red].

Fig. S8 Representative TGA curve for β -CD·VAL (n = 2) [blue] and a DSC curve for β -CD·VAL (n = 2) [red].

Fig. S9 Representative TGA curve for γ -CD·VAL (n = 2) [blue] and a DSC curve for γ -CD·VAL (n = 2) [red].

Fig. S10 Representative TGA curve for DMB·VAL (n = 2) [blue] and a DSC curve for DMB·CD·VAL (n = 2) [red].

Fig. S11 Representative TGA curve for TMB·VAL (n = 2) [blue] and a representative DSC curve for TMB·CD·VAL (n = 3) [red].

Fig. S12 Representative TGA curve for TMA·VAL (n = 2) [blue] and a representative DSC curve for TMA·CD·VAL (n = 2) [red].

Complex	DSC	TGA
α-CD·VAL	1) Onset temp (1): 21.0	Dehydration:
	2) Peak temp. (1): 61.6 ± 1.8	10.4 ± 0.3 % (25.0 and 128.9 °C), which equates to
	3) Onset of shoulder endotherm: 81.1 °C ± 0.9	6.7 water molecules per $lpha$ -CD molecule.
	4) Onset temp (2): 120.9 ± 0.5	
	5) Peak temp. (2): 133.8 ± 0.1	
	6) Onset temp (3): 155.9 ± 0.3	
	Peak temp. (3): 161.5 ± 0.1	
β-CD·VAL	Onset temp. (1): 25.2 °C	Dehydration:
-	Peak temp. (1): 47.9	11.5 ± 1.0 % (16.7 °C and 128.6 °C), which equates
	Onset temp. (2): 65.5 °C	to 9.2 water molecules per β -CD molecule.
	Peak temp. (2): 67.9 °C	
	Onset temp. (3): 118.0 °C	
	Peak temp. (3): 120.0 °C	
γ-CD·VAL	Onset temp. (1): 21.0 °C	Dehydration:
	Peak temp. (1): 82.8 ± 0.1 °C	16.4 ± 0.6 % (21.7 and 112.3 °C), which equates to
		15.3 water molecules per γ -CD molecule.
DMB·VAL	Single shoulder: 25.5 – 49.0 °C	Dehydration:
		2.1 ± 0.3 % (23.1 and 41.9 °C), which equates to 1.8
		water molecules per DMB molecule.
TMB·VAL	Onset temp. (melt): 126.7 ± 0.8 °C	<u>Guest loss:</u>
	Peak temp. (melt): 130.3 ± 0.1 °C	8.3 ± 0.9 % (110.5 and 239.0 °C)
		(No dehydration occurred).
TMA·VAL	Onset temp. (1): 95.1 ± 0.6 °C	Dehydration:
	Peak temp. (1): 101.5 ± 0.5 °C	1.5 ± 0.1 % (20.8 °C and 38.2 °C), which equates to
	Onset temp. (2): 108.3 ± 0.7 °C	1.2 water molecules per TMA molecule.
	Peak temp. (2): 114.6 ± 0.1 °C	
	Shoulder range: 119.5 ± 0.1 °C to 152.3 ± 0.1 °C	<u>Guest loss:</u>
	Onset temp. (3): 214.8 ± 2.2 °C	9.9 ± 0.7 %
	Peak temp. (3): 220.0 ± 0.1 °C	(99.4 °C and 214.8 °C)

Table S7 TGA and DSC measurements.

Fig. S13 FT-IR shift of the C=O band on inclusion of VAL in α -CD.

Fig. S14 FT-IR shift of the C=O band on inclusion of VAL in β -CD.

Fig. S15 FT-IR shift of the C=O band on inclusion of VAL in γ -CD.

Fig. S16 FT-IR shift of the C=O band on inclusion of VAL in DMB.

Fig. S17 FT-IR shift of the C=O band on inclusion of VAL in TMB.

Fig. S18 FT-IR shift of the C=O band on inclusion of VAL in TMA.

Fig. S19 PXRD patterns α -CD·VAL produced via co-precipitation (2:1) and kneading (2:1).

Fig. S20 PXRD patterns β -CD·VAL produced via co-precipitation (1:1) and kneading (1:1) and that of an isostructural β -CD inclusion complex crystallizing in the space group C2.

Fig. S21 The PXRD patterns of an isostructural γ -CD inclusion complex crystallizing in the space group P42₁2, and the γ -CD·VAL inclusion complex produced via co-precipitation (3:4) and kneading (3:4).

Fig. S22 PXRD patterns of the crystal form of DMB employed in this study (polymorph 1, CSD refcode QIYKEO), DMB·VAL produced via co-precipitation (1:1), and a product from kneading DMB and valproic acid.

Fig. S23 The PXRD patterns of a TMB complex crystallizing in the space group $P2_12_12_1$ (refcode XAQJII), a TMB·VAL complex (1:1) produced *via* co-precipitation, a representative isostructural TMB inclusion complex that crystallizes in $P2_12_12_1$ (refcode PAFSOE, with different unit cell data from XAQJII) and a different TMB·VAL complex produced *via* kneading.

Fig. S24 The PXRD patterns of the TMA·VAL inclusion complex produced *via* co-precipitation (1:1) and kneading (1:1).

	BCD·VAL	GCD·VAL	DMB·VAL	TMA·VAL
Complex formula	$2(C_{42}H_{70}O_{35})\cdot 2(C_8H_{16}O_2)\cdot$	3(C ₄₈ H ₈₀ O ₄₀)·4(C ₈ H ₁₆ O ₂)·	(C ₅₆ H ₉₈ O ₃₅).(C ₅₇ H ₁₀₀ O ₃₅)⋅	(C ₅₄ H ₉₆ O ₃₀)⋅(C ₈ H ₁₆ O ₂)⋅
	9.2H₂O	49H ₂ O	2(C ₈ H ₁₆ O ₂)·3.9H ₂ O	1.2H ₂ O
Formula weight (g.mol ⁻¹)	2900.67	5350.95	3035.06	1391.13
Temperature (K)	100(2)	293(2)	173(2)	100(2)
Wavelength (Å)	0.71073	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Tetragonal	Triclinic	Orthorhombic
Space group	C2	P4212	P1	P212121
a (Å)	19.133(5)	23.745(4)	10.396(2)	15.337(3)
b (Å)	24.566(7)	23.745(4)	15.111(3)	20.728(4)
c (Å)	15.782(5)	23.100(5)	25.494(5)	23.104(5)
α (°)	90	90	83.247(4)	90
β (°)	108.873(6)	90	81.556(4)	90
γ (°)	90	90	89.475(4)	90
Volume (Å ³)	7019(3)	13025(5)	3934(1)	7345(3)
Z	2	2	1	4
Calculated density (g.cm ⁻³)	1.372	1.364	1.281	1.258
μ (mm ⁻¹)	0.123	0.123	0.106	0.101
F (000)	3108	5748	1635	3008
Crystal size (mm)	0.12 x 0.15 x 0.27	0.19 x 0.25 x 0.45	0.10 x 0.22 x 0.51	0.16 x 0.19 x 0.43
θ -Range scanned (°)	1.68 – 25.24	1.23– 25.56	1.36 – 25.04	2.71 – 20.29
Index range	h: -24, 24; k: -31, 31;	h: -28, 28; k: -26, 28;	h: -12, 12; k: -17, 17; l: -30, 30	h: -19, 19; k: -26, 25;
	l: -20, 20	l: -27, 27		l: -29, 29
No. of reflections collected	29021	149732	44688	67773
No. of unique reflections	15385	12162	26358	16290
Data completeness (%)	98.6	99.4	99.4	99.2
Data/restraints/parameters	15385/16/802	12162/8/655	26358/35/1664	16290/1/863
S (Goodness-of-fit on F ²)	1.122	1.73	1.191	1.017
Final R indices R ₁ , wR ₂ ,	0.0997, 0.2742	0.1431, 0.4024	0.1055, 0.2904	0.0676, 0.1482
$[I > 2\sigma(I)]$				
R Indices, all data (R ₁ , wR ₂)	0.1320, 0.3047	0.1554, 0.4101	0.1494, 0.3294	0.1342, 0.1761
Largest diff. peak and hole (e. $Å^{-3}$)	1.27, -0.42	0.55, -0.63	0.83, -0.47	0.38, -0.34

Table S8	Crystal Data	and Refinement	Parameters
----------	--------------	----------------	------------

.

Fig. S25 Key to atomic and glucose residue numbering for DMB(A).

Residue	/ (Å)	D (Å)	Φ (°)	d (°)	αª (Å)	D₃ [♭] (Å)	τ ₂ ^c (°)
A1	4.992	4.449	129.6	8.3	-0.086	2.97	11.4
A2	4.990	4.393	130.5	-3.3	-0.094	2.82	7.0
A3	5.208	4.342	124.7	-10.0	0.179	2.84	19.2
A4	5.037	4.422	129.7	15.8	0.015	2.96	22.7
A5	4.952	4.455	129.8	-8.0	-0.241	2.80	4.2
A6	5.111	4.311	127.2	0.1	0.189	2.80	6.8
A7	5.151	4.417	127.0	-2.8	0.038	2.83	22.7

Table S9 Geometrical parameters for the host molecule A in DMB·VAL.

^a mean e.s.d. 0.005 Å; ^b mean e.s.d. 0.01 Å; ^c mean e.s.d. 0.5^o

I, the distance of each O4 atom from the centroid of the O4-polygon;

D, the glycosidic O4…O4' distance;

 $\Phi\,$ the O4…O4'…O4'' angle;

d, the O4…O4′…O4′′…O4′′′ torsion angle;

 α , the deviation of each O4 atom from the mean O4-plane;

D₃, the O2…O3' intra-ring distance;

 τ_2 tilt angle: the angle between the plane containing O4, C4, C1 and O4'

of a given glucose ring and the mean O4-plane.

Fig. S26 Key to atomic and glucose residue numbering for DMB(B).

Residue	/ (Å)	D (Å)	Φ (°)	d (°)	αª (Å)	D₃ [♭] (Å)	τ ₂ ^c (°)
B1	5.000	4.426	129.1	12.6	-0.189	2.89	11.8
B2	5.075	4.433	128.8	-10.6	-0.097	2.85	6.4
B3	5.195	4.300	124.1	-8.0	0.311	3.27	27.5
B4	4.925	4.476	132.2	19.0	-0.074	2.98	23.8
B5	5.003	4.358	128.1	-9.3	-0.307	2.88	3.6
B6	5.156	4.342	125.9	-3.6	0.279	2.83	8.5
B7	5.061	4.469	128.9	-0.5	0.077	2.84	25.4

 $^{\rm a}$ mean e.s.d. 0.006 Å; $^{\rm b}$ mean e.s.d. 0.01 Å; $^{\rm c}$ mean e.s.d. 0.5 $^{\circ}$

Fig. S27 Stereoview of the inclusion mode of the guest molecule VAL in TMA, showing the location of the protruding guest residue in an interstice at the junction of three neighbouring TMA molecules in the layer below. For clarity, the VAL molecules included in the three CD molecules have been omitted (as have H atoms, except those of the VAL -COOH group). Both disordered components of the -COOH group engage in H-bonding with neighbouring CD molecules.

Residue	l (Å)	D(Å)	Φ (°)	d(°)	αª (Å)	D₃ ^b (Å)	τ ₂ ^c (°)
Α	4.381	4.377	115.6	-6.5	0.283	3.314	9.2
В	4.124	4.240	123.0	-9.7	-0.246	3.428	17.5
С	4.274	4.212	120.2	17.4	-0.040	3.279	33.5
D	4.385	4.336	114.8	-7.9	0.294	3.279	7.2
E	4.084	4.241	124.4	-8.6	-0.260	3.440	17.2
F	4.302	4.225	118.9	16.0	-0.030	3.156	30.0

Table S11 Geometrical parameters of the host molecule in TMA·VAL.

^a mean esd: 0.002 Å; ^b mean esd: 0.1°; ^c mean e.s.d. 0.12°

Calculations: Gravimetric solubility analysis

<u>α-CD·VAL:</u>

Experiment 1: Mass of penultimate and final increment of inclusion complex: 5.22 – 5.59 mg Experiment 2: Mass of penultimate and final increment of inclusion complex: 5.22 – 5.49 mg

Fraction of valproic acid in α -CD·VAL:

 $\frac{144.211 \ g/mol}{144.211 \ g/mol + 2(972.846 \ g/mol) + 13.5(18.016) \ g/mol} = 0.061810$

Therefore, the mass range of valproic acid solubilized in 1 ml H₂O is:

Experiment 1: 0.061810 x (5.22 – 5.59 mg) = 0.323 – 0.346 mg

Experiment 2: 0.061810 x (5.22 – 5.49 mg) = 0.323 – 0.339 mg

<u>β-CD·VAL:</u>

Experiment 1: Mass of penultimate and final increment of inclusion complex: 5.14 - 5.43 mg Experiment 2: Mass of penultimate and final increment of inclusion complex: 4.97 - 5.18 mg

Fraction of valproic acid in β -CD·VAL:

 $\frac{144.211 \ g/mol}{144.211 \ g/mol \ + \ 1134.987 \ g/mol \ + \ 9.2(18.016) \ g/mol} = 0.099804$

Therefore, the mass range of valproic acid solubilized in 1 ml H₂O is:

Experiment 1: 0.099804 x (5.14 – 5.43 mg) = 0.513 – 0.542 mg

Experiment 2: 0.099804 x (4.97 – 5.18 mg) = 0.496 – 0.517 mg

<u>γ-CD·VAL:</u>

Experiment 1: Mass of penultimate and final increment of inclusion complex: 6.92 – 7.15 mg

Experiment 2: Mass of penultimate and final increment of inclusion complex: 6.77 – 7.04 mg

Fraction of valproic acid in γ -CD·VAL:

$$\frac{144.211 \ g/mol}{144.211 \ g/mol + \frac{3}{4}(1297.128) \ g/mol + 12.2(18.016) \ g/mol} = 0.10787$$

Therefore, the mass range of valproic acid solubilized in 1 ml H₂O is:

Experiment 1: 0.10787 x (6.92 – 7.15 mg) = 0.746 – 0.771 mg

Experiment 2: 0.10787 x (6.77 – 7.04 mg) = 0.730 – 0.759 mg