Supporting Information

High-precision synthesis of α -MnO₂ nanowires with controllable crystal facets for propane oxidation

Chao Feng¹, Gaoyan Xiong¹, Yaping Li², Qianqian Gao¹, Yuan Pan^{1,*}, Zhaoyang Fei³, Yanpeng Li¹, Yukun Lu², Chenguang Liu¹ and Yunqi Liu^{1,*}

¹ State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao 266580, China

² College of Science, China University of Petroleum, Qingdao 266580, China

³ State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Technology University, Nanjing 211816, China

* E-mail: panyuan@upc.edu.cn (Y. Pan); liuyq@upc.edu.cn (Y. Liu)

Summary of the supporting information: 22 pages, 6 tables and 12 figures

Catalyst Characterization.

Transmission electron microscopy (TEM), high-resolution transmission electron microcopy (HRTEM) images and Energy-dispersive X-ray spectroscopy (EDS) elemental mapping images were collected on a JEM-2100UHR instrument at a voltage of 200 kV. The as-prepared samples were firstly treated by ultrasonic dispersion in ethanol and then dried on a carbon film supported by a copper grid.

The XRD patterns were obtained by X' Pert Pro MPD between 25° and 85° at a step length of 5° min⁻¹ with a Cu K α radiation ($\lambda = 0.154056$ nm). The crystalline sizes of catalysts were estimated by the Scherrer formula which was showed below (eq 1):

$$D = \frac{K\lambda}{B\cos\theta} \tag{1}$$

K is the Scherrer constant "0.89", when B is the half-width of X-ray diffraction; θ is diffraction angle.

The N₂ adsorption-desorption isotherm, BET surface area, t-plot area, pore size and pore volume of the catalysts were measured at 77 K with a Micromeritics ASAP2010 instrument, used the Barrett-Joyner-Halenda (BJH) method. Before the test, each sample was pretreated at 573 K for 2 h under 7-10 mmHg. Elemental analysis was performed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) on an Agilent ICPOES 730.

The Scanning Electron Microscope (SEM) images were recorded on a Hitachi S-4800 apparatus at a voltage of 200.0 kV.

The XPS patterns were measured on a Escalab 250 Xi electronic energy spectrum at 300 W using Mg K α X-rays as the excitation source. The data were processed by the XPS-PEAK software,

and surface element contents were calculated through XPS peak areas. The Binding energies (BE) were calibrated by the C 1s at 284.8 eV.

H₂ temperature programmed reduction (H₂-TPR) and O₂ temperature programmed desorption (O₂-TPD) were operated on a Quantachchrome Chembet Pulsar apparatus with the same pretreatment. Briefly, 100 mg samples with 40-60 mesh were pretreated at 300 °C for 70 min under Helium in the U-shape quartz reactor. For H₂-TPR, the samples were first cooled down to 30 °C, then reacted with Hydrogen from 50 °C to 750 °C with a heating rate of 10 °C min⁻¹ under the atmosphere of 10 % H₂/He (50 mL·min⁻¹). And for O₂-TPD, after cooling under Helium, the samples were treated by a 5 % O₂/N₂ gas flow (50 mL·min⁻¹) for O₂ adsorption and saturation, then the samples were heated from 50 to 600 °C under the atmosphere of He (50 mL·min⁻¹) with a heating rate of 10 °C·min⁻¹.

The Fourier Transform Infrared spectroscopy analysis of the catalyst adopts the American Nicolet NEXUS Fourier Transform Infrared Spectrometer. Weigh a certain amount of KBr particles and catalysts, grind them into powder in an agate mortar, and put them into an infrared spectrometer for testing after pressing.

Raman spectra were collected on a ThermoFisher DXR microscope with 532 nm laser excitation.

Electron paramagnetic resonance spectra were collected on a Bruker A300 spectrometer. The spectrometer operates at microwave frequency near 100 kHz. Oxford helium cryostat enabled measurement from room temperature down to 3560. Simulations were performed with Bruker WinEPR Simphonia. The concentration were estimated by comparing the integral intensity of signal.

In-situ DRIFT spectra were obtained on a Bruker Equinox 55 instrument equipped with an MCT/A detector and a ZnSe *in-situ* cell. The spectra were collected by accumulating 64 scans with

a resolution of 4 cm⁻¹. Prior to each test, the sample was pretreated by heated at 80 °C for 6 h, and then cooled down to room temperature for further reaction.

Electrochemical measurement.

A Gamry Reference 3000 in a classic 3-electrode mode was utilized to carry out the electrochemical impedance spectroscopy (EIS) measurements. The counter electrode was a graphite rod, the reference electrode was an Ag/AgCl (saturated KCl), and the working electrode was a glassy carbon electrode (GCE) modified with the sample. The working electrode was prepared as follows: The as-fabricated sample (5.0 mg) was dispersed into ethanol (450 μ L) and deionized water (500 μ L) mixed with Nafion (50 μ L) at a 5% (w/w) ratio. The suspension was subjected to 30-min of ultrasonication to produce a homogeneous ink. 5 μ L of the ink was then spread onto a 3-mm-diameter polished GCE. Prior to obtaining the data, the GCE was dried for 1 h at ambient temperature to yield a mass loading of 0.35 mg·cm⁻². The EIS test was conducted at a –0.40 V (overpotential) over a frequency range of 10⁵–10⁻² Hz against the reference electrode.

Reaction Kinetics Measurement

The C_3H_8 conversion (X_{C3H_8}) and TOF were calculated with the eqs 2 and 3.

$$X_{C_{3}H_{8}} = \frac{[C_{3}H_{8}]_{inlet} - [C_{3}H_{8}]_{outlet}}{[C_{3}H_{8}]_{inlet}} \times 100\%$$
(2)
$$TOF = \frac{[C_{3}H_{8}]_{inlet} \times X_{C_{3}H_{8}} \times V}{[Mn^{4+}]}$$
(3)

where $[C_3H_8]_{inlet}$ and $[C_3H_8]_{outlet}$ are the C_3H_8 concentrations in the inlet and outlet gas (vol.%), respectively. $[Mn^{4+}]$ was the concentration of the active Mn^{4+} over the catalysts obtained by the

results of XPS (mol). And V in the total flow rate (mol·s⁻¹), the reaction rate, r_{C3H8} (mol· g_{MnOx} ⁻¹ s⁻¹), is calculated with X_{C3H8} as the eq 4:

$$r_{C_{3}H_{8}} = \frac{N_{C_{3}H_{8}} \cdot X_{C_{3}H_{8}}}{W_{cat} \cdot w \mathscr{M}_{MnO_{r}}}$$
(4)

where $N_{C_{3}H_{8}}$ is the $C_{3}H_{8}$ gas flow rate (mol·s⁻¹), _{Weat} is the catalyst weight (g), w%_{MnOx} is the content of MnO₂.

When the conversion of propane is lower than 20 %, a dependence of the reaction rate (r_{C3H8}) on the products of CO₂ and H₂O can be ignored. Therefore, the empirical kinetic expression of the reaction rate equation can be described as eq 5:

$$r_{C_3H_8} = A \exp\left(-\frac{E_a}{RT}\right) P_{C_3H_8}^{\ \alpha} P_{O_2}^{\ \beta}$$
(5)

Then taking the logarithm of eq 4, we get eq 6.

$$\ln r_{C_{3}H_{8}} = -\frac{E_{a}}{RT} + \ln A + \alpha \ln P_{C_{3}H_{8}} + \beta \ln P_{O_{2}}$$
(6)

When the conversion of propane is lower than 20 %, the components of the reactant feed gas variation can be ignored. Hence ln A, α ln P_{C3H8} and β ln P_{O2} can be supposed to be approximately constant, and eq 6 can be simplified to eq 7.

$$\ln r_{C_3 H_8} = -\frac{E_a}{RT} + C \tag{7}$$

The activation energy (E_a) can be obtained from the slope of the resulting linear plot of ln r versus 1/T.

Density functional theory (DFT) Calculation Details

In the calculation of oxygen vacancy formation energy, the slab model surfaces of MnO_2 were built. A p (2×2) unit cell expansion is used to model. A vacuum of 10 Å was used to simulate the surface in periodic boundary condition. The energy of oxygen vacancy formation, E_v , for an oxygen atom released from MnO₂ on the surface to generate an oxygen vacancy is defined as (eq 8):

$$E_v = E_{defect} + \mu_0 - E_{bulk} \tag{8}$$

where E_{bulk} is the total clean relaxation energy of the surface slab, μ_0 is the chemical potential of oxygen, and E_{defect} is the total energy of the slab with an oxygen atom removed from the surface. Since the calculations are performed at 0 K and fixed cell volume, the differences in Gibbs free energy should equal the differences in total energy. By this definition, the lower the E_v is, .the easier oxygen ions will be released, which will promote the migration of oxygen atoms surrounded.

The binding energy (Eads) of propane molecule on the surface were calculated as (eq 9):

$$E_{ads} = E_{adsorbate + surface} - E_{surface} - E_{gas}$$
(9)

where $E_{surface}$ is the clean surface relaxation energy of the surface slab, E_{gas} is the energy of a free gas molecules in the vacuum, and $E_{adsorbate+surface}$ is the energy of the composite system. Because of the calculations are performed at 0 K and fixed cell volume, the differences in Gibbs free energy should equal the differences in total energy. By this definition, a negative value of E_{ads} corresponds to exothermic and spontaneous adsorption processes.

Figures

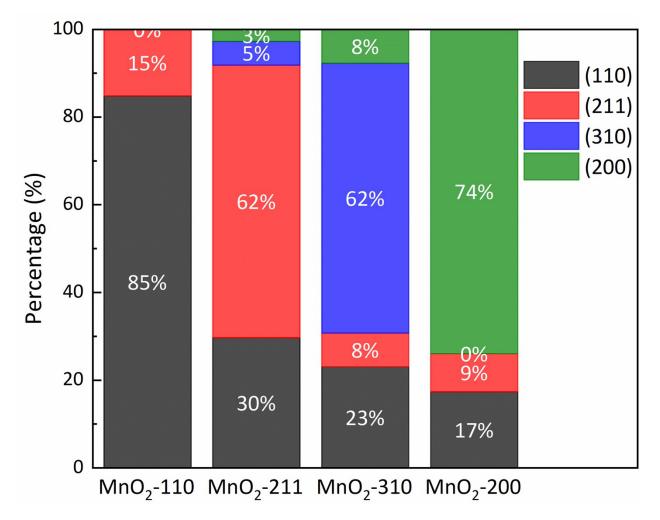
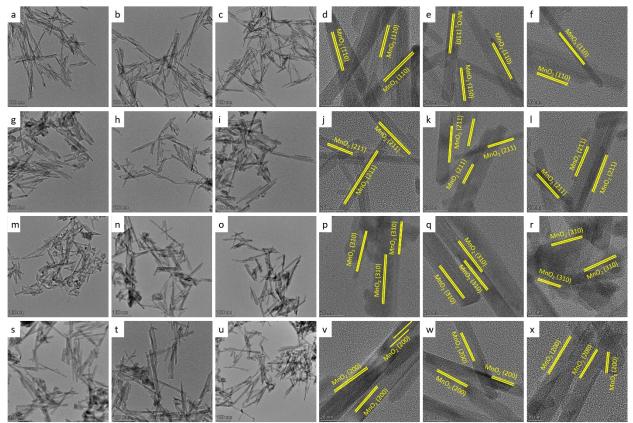



Figure S1. Percentage of different crystal planes of α -MnO₂ nanowire catalysts.

Figure S2. TEM and HRTEM of (a-f) MnO₂-110, (g-l) MnO₂-211, (m-r) MnO₂-310, (s-x)

MnO₂-200 catalysts.

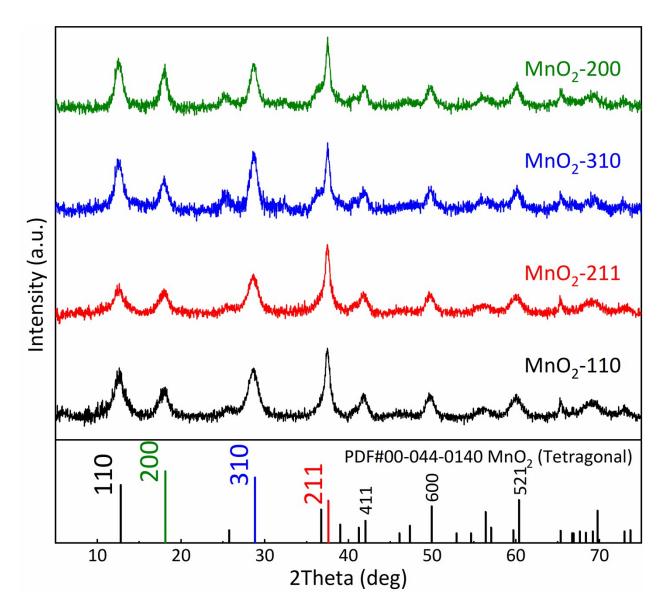


Figure S3. Powder XRD patterns of fresh α -MnO₂ nanowire catalysts with different facets.

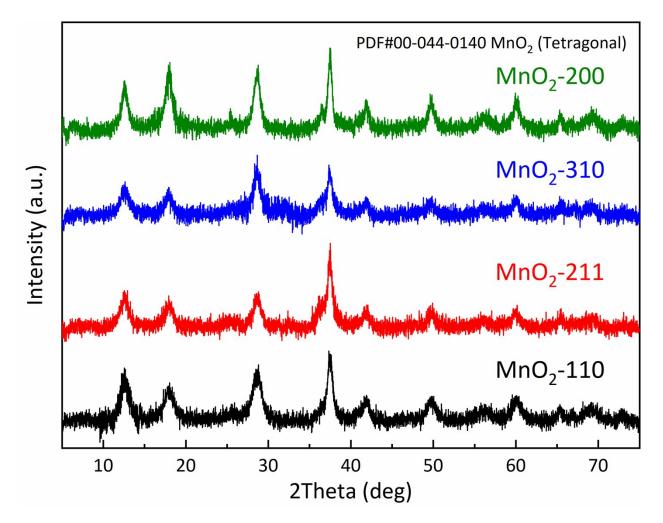


Figure S4. Powder XRD patterns of used α -MnO₂ nanowire catalysts at T₅₀ of reaction.

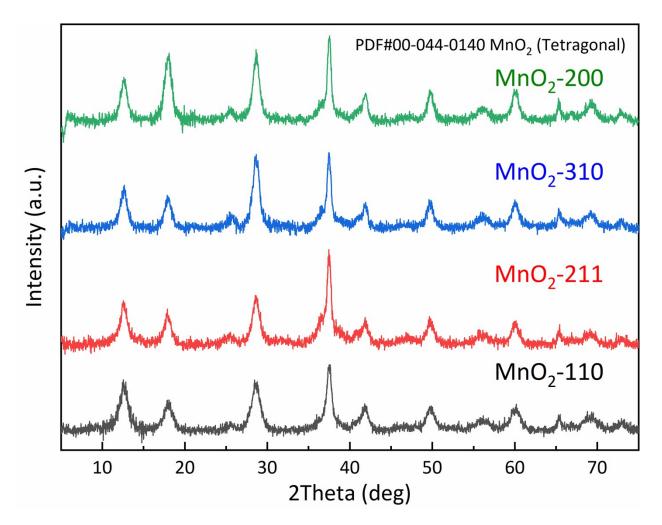


Figure S5. Powder XRD patterns of used α -MnO₂ nanowire catalysts after reaction.

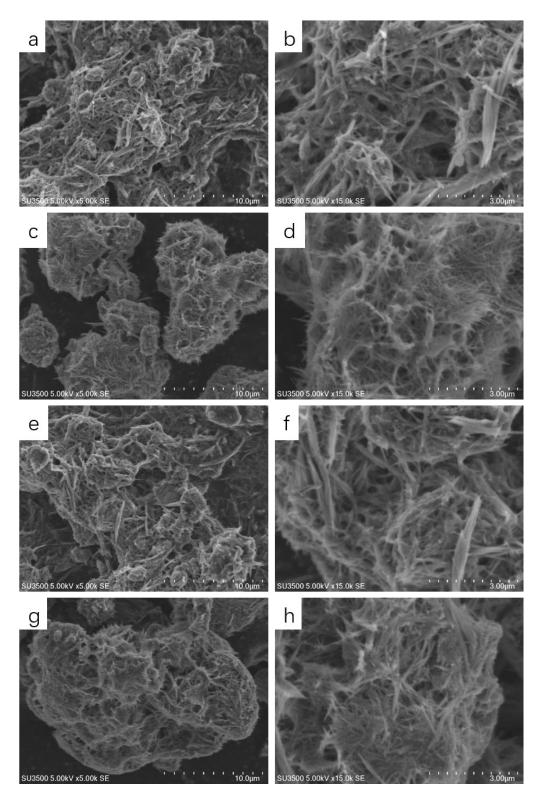


Figure S6. SEM images of (a)(b) MnO₂-110, (c)(d) MnO₂-200 before reaction and (e)(f) MnO₂-110, (g)(h) MnO₂-200 after reaction.

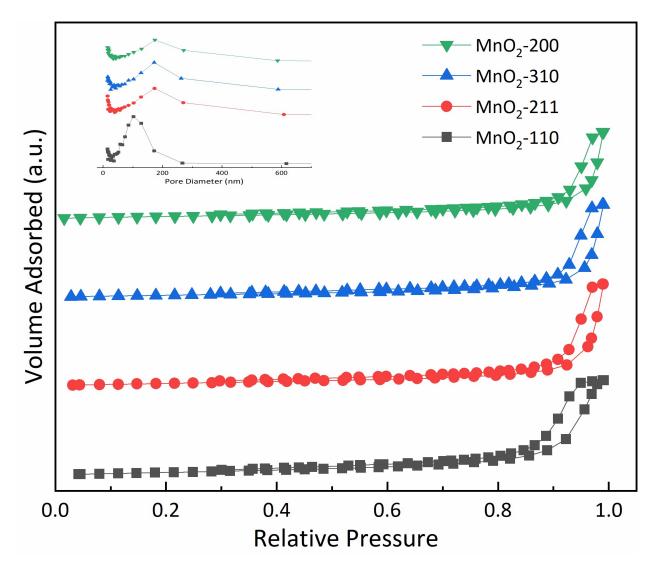


Figure S7. N_2 adsorption-desorption isotherm and pore size distributions of α -MnO₂ nanowire catalysts.

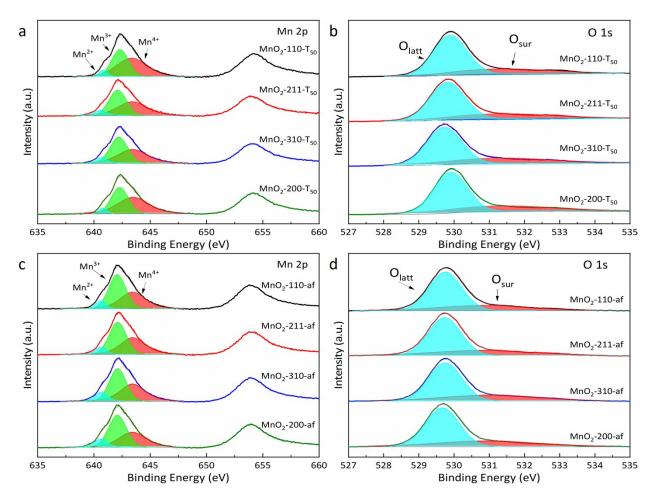


Figure S8. Mn 2p and O 1s XPS spectra for α -MnO₂ nanowire catalysts (a) (b) at T₅₀ of reaction,

(c) (d) after reaction.

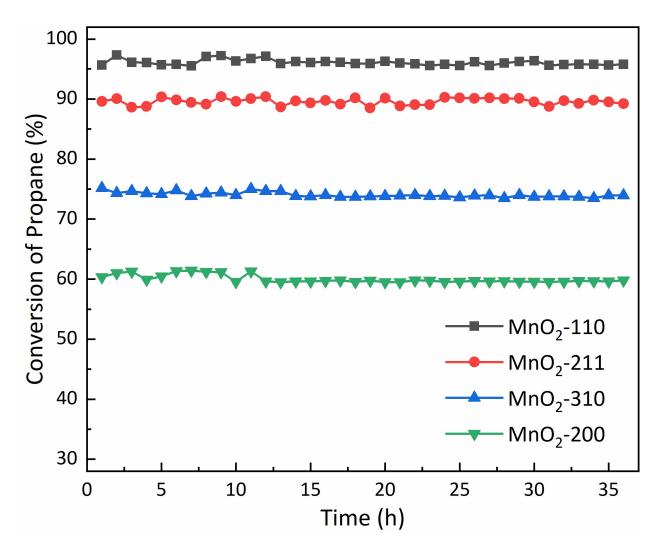


Figure S9. Catalytic stability of α -MnO₂ nanowire catalysts at 275 °C.

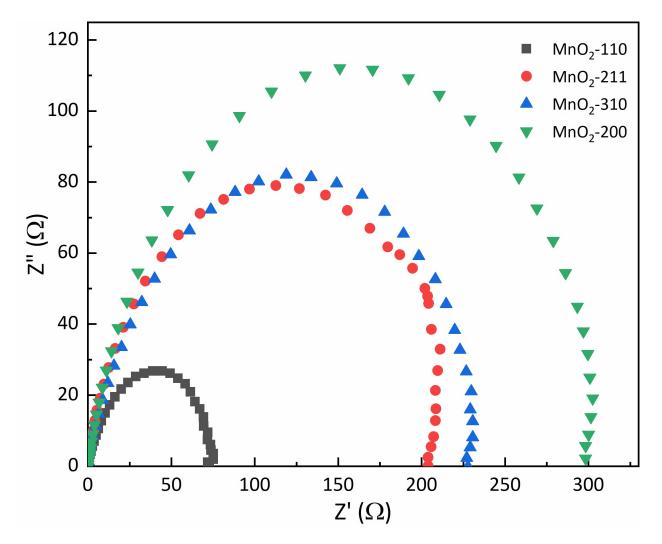


Figure S10. Electrochemical impedance spectroscopy (EIS) data for α-MnO₂ nanowire catalysts.

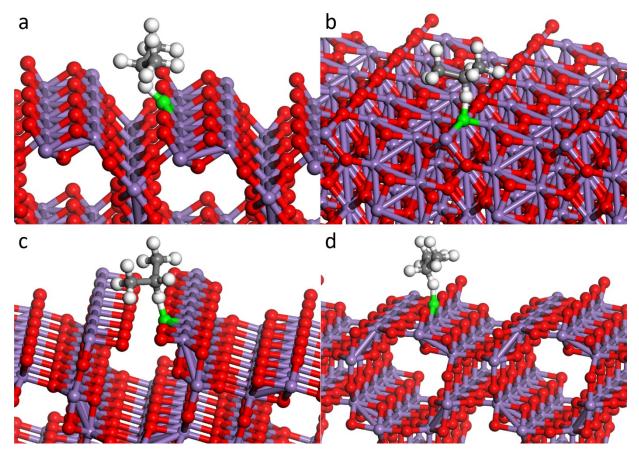


Figure S11. Calculated structures of adsorbed propane on (a) MnO_2 -110, (b) MnO_2 -211, (c) MnO_2 -310 and (d) MnO_2 -200.

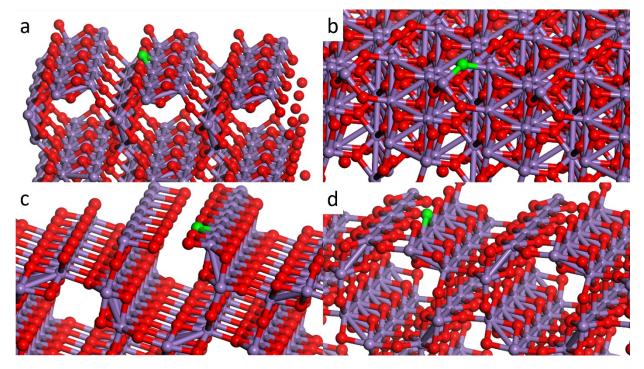


Figure S12. Calculated structures of oxygen vacancy on (a) MnO₂-110, (b) MnO₂-211, (c) MnO₂-

310 and (d) MnO₂-200.

Table

Sample	Lattice parameters (Å) ^a MnO ₂ (211)	Dcrys ^b (nm)	Sample	Lattice parameters (Å) ^a MnO ₂ (211)	Dcrys ^b (nm)
MnO ₂ -110	9.8457	10.504	MnO ₂ -110- af	9.8543	10.372
MnO ₂ -211	9.8404	10.544	MnO ₂ -211- af	9.8661	10.698
MnO ₂ -310	9.8234	11.167	MnO ₂ -310- af	9.8625	11.692
MnO ₂ -200	9.8097	12.1	MnO ₂ -200- af	9.8624	12.718

Table S1. Structural parameters of the α -MnO₂ nanowire catalysts before and after reaction.

^a calculated from lattice constants from peak locations and miller indices ^b calculated from the Scherrer formula

Sample	S _{BET}	$S_{BJH} (m^2 \cdot g^{-1})$		Vp	C ₃ H ₈	O ₂
	$(m^2 \cdot g^{-1})$	S _{Ads}	S _{Des}	$(cm^{3} \cdot g^{-1})$	ads(%)	ads(%)
MnO ₂ -110	49.1	37.1	55.1	0.58	0.198	0.21
MnO ₂ -211	46.3	31.1	45.8	0.57	0.177	0.208
MnO ₂ -310	43.4	28.5	41.8	0.55	0.149	0.198
MnO ₂ -200	41.6	28.4	38.3	0.54	0.116	0.168

Table S2. Structural and physical parameters of the α -MnO₂ nanowire catalysts.

Sample	Before reaction			At T ₅₀ of reaction			After reaction		
Sample	Mn ⁴⁺⁰ %	Mn ³⁺⁰ /0	Mn ²⁺⁰ /0	Mn ⁴⁺⁰ /0	Mn ³⁺⁰ /0	Mn ²⁺⁰ /0	Mn ⁴⁺⁰ /0	Mn ³⁺⁰ /0	Mn ²⁺⁰ /0
MnO ₂ -110	44.97	48.38	6.65	54.12	41.74	4.13	41.18	51.56	7.26
MnO ₂ -211	40.97	51.49	7.53	52.74	41.73	5.51	42.88	49.37	7.75
MnO ₂ -310	36.29	47.86	15.85	47.81	44.98	7.19	43.56	46.21	10.23
MnO ₂ -200	20.06	45.60	34.34	45.08	46.67	8.23	38.36	51.13	10.51
Sample	Before reaction			At T ₅₀ of reaction			After reaction		
Sumple	O _{sur} %	O_{latt} %	O_{sur} / O_{latt}	O _{sur} %	O_{latt} %	O_{sur} / O_{latt}	O _{sur} %	O_{latt} %	O_{sur} / O_{latt}
MnO ₂ -110	28.9	71.1	0.41	28.3	71.69	0.39	29.98	70.02	0.43
MnO ₂ -211	28.79	71.01	0.40	28.17	71.82	0.39	29.31	69.69	0.42
MnO ₂ -310	24.82	75.18	0.33	25.98	74.01	0.35	30.87	69.13	0.44
MnO ₂ -200	22.73	77.27	0.29	25.68	74.31	0.34	30.06	69.94	0.43

Table S3. XPS data of α -MnO₂ nanowire catalysts before, at T₅₀ of and after reaction.

Table S4. H₂-TPR data of α -MnO₂ nanowire catalysts.

Sample	Pe	ak 1	Peak 2			
Sample	Position	Percentage	Position	Percentage		
MnO ₂ -110	230.64	0.32	272.0	0.68		
MnO ₂ -211	237.9	0.26	275.1	0.74		
MnO ₂ -310	247.5	0.22	285.5	0.78		
MnO ₂ -200	253.5	0.09	301.3	0.91		

Sample	Peak 1		Peak 2		Peak 3		Peak 4	
Sample	Position	Percentage	Position	Percentage	Position	Percentage	Position	Percentage
MnO ₂ -110	133.77	49.01	215.67	13.23	341.97	20.93	460.67	16.81
MnO ₂ -211	139.42	44.83	217.04	9.98	346.15	29.49	482.65	15.68
MnO ₂ -310	140.41	44.39	225.21	9.99	348.07	14.78	483.91	30.82
MnO ₂ -200	141.78	34.09	228.87	20.51	351.93	21.99	492.58	23.40

Table S5. O₂-TPD data of α -MnO₂ nanowire catalysts.

Table S6. Frequencies of functional groups present on the α -MnO₂ nanowire catalysts analyzed

by DRIFTS

Mode					
(wave number cm^{-1})	MnO ₂ - 110	MnO ₂ -211	MnO ₂ -310	MnO ₂ -200	References
v _{as} (CH ₃)	3040	3058	3092	3078	[1]
$v_{as}(CH_2)$	3000	3004	3008	3012	[1]
υ _s (C=O)	1720	1732	1761	1755	[2]
$\delta_{as}(HOH)$	1650	1648	1683	1660	[3]
υ _{as} (COO) adsorbed on surface	1524 and 1584	1522 and1590	1549 and 1619	1547 and 1584	[4]
$\upsilon_{as}(COO)$	1445	1443	1448	1445	[5]
$\delta_s(CH_3)$	1403	1389	1398	1400	[6]
$v_{as}(C-O)$	1307	1310	1318	1297	[7]
υ _s (CH ₃ COO)	1258	1264	1260	1232	[8]
υ _s (C-O-CH)	1202	1208	1201	1180	[8]
υ _{as} (C-O-C)	1120	1096	1125	1110	[8]
υ _s (CH-O-CH)	1051	1059	1059	1060	[8]

Reference

[1] Z. Zhao, T. Wu, C. Xiong, G. Sun, R. Mu, L. Zeng and J. Gong, *Angew. Chem. Int. Ed. Engl.*, 2018, **57**, 6791-6795.

[2] B. Wang, X. Wu, R. Ran, Z. Si and D. Weng, J. Mol. Catal. A: Chem., 2012, 361-362, 98-103.

[3] Y. Jian, X. Feng, M. Tian, Z. Jiang and C. He, Appl. Surf. Sci., 2021, 559, 149905.

[4] Y. Fang, L. Li, J. Yang, S. Hoang, L. Wang, J. Xu, W. Yang, C. Pan, Y. Zhu, H. Deng, Z. Luo, C. Sun, D. Gao, Z. Li and Y. Guo, *Environ. Sci. Technol.*, 2020, **54**, 15476-15488.

[5] T. Zhang, X. Lang, A. Dong, X. Wan, S. Gao, L. Wang, L. Wang and W. Wang, *ACS Catal.*, 2020, **10**, 7269-7282.

[6] J. Zhao, C. Tu, W. Sun, H. Xia, H. Zhang, Q. Dai and X. Wang, *Catal. Sci. Tech.*, 2020, **10**, 742-756.

[7] H. Wang, B. Peng, R. Zhang, H. Chen and Y. Wei, Appl. Catal. B: Environ., 2020, 276, 118922.

[8] W. Zhu, X. Chen, C. Li, Z. Liu and C. Liang, J. Catal., 2021, 396, 179-191.