Supplementary Information

Formation of Double-Cone-Shaped ZnO Mesocrystals by Addition of Ethylene Glycol to ZnO Dissolved Choline Chloride-Urea Deep Eutectic Solvents and Observation of Their Manners of Growth

Hajime Wagata, ${ }^{\text {* }}$ Ginji Harada ${ }^{1}$, Eriko Nakashima, ${ }^{1}$ Motoki Asaga, ${ }^{1}$ Tomoaki

Watanabe, ${ }^{1}$ Yuya Tanaka, ${ }^{2}$ Masaru Tada, ${ }^{3}$ and Kunio Yubuta ${ }^{4}$

${ }^{1}$ Department of Applied Chemistry, School of Science and Technology, Meiji University, Kawasaki 214-8571, Japan
${ }^{2}$ Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
${ }^{3}$ Materials Analysis Division, Open Facility Center, Tokyo Institute of Technology, Tokyo 152-8550, Japan
${ }^{4}$ Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoka 819-0395, Japan

Tel.: +81-44-934-7208
Fax: +81-44-934-7906
*E-mail address of corresponding author: wagata@meiji.ac.jp

Table S1. Experimental conditions for the growth of ZnO crystals in CU-DES:ZnO mixed with EG

Run No.	CU-DES: ZnO ZnO conc. $/$ mass \%	CU-DES:ZnO mass /g	EG volume / mL	EG addition rate $/ \mathbf{m L}$ min $^{-1}$	Holding temp. $1{ }^{\circ} \mathrm{C}$	Aging time /h
1	3.3	20	80	1.0	150	24
2	7.2	20	80	1.0	150	24
3	16.7	20	80	1.0	150	24
4	16.7	20	80	1.0	150	0
5	16.7	20	80	1.0	150	12
6	16.7	20	80	2.0	150	24
7	16.7	20	80	8.0	150	24
8	16.7	20	80	1.0	120	24
9	16.7	20	80	1.0	90	24

Detail of calculation of crystallite size by Scherrer's equation

According to "X-ray Diffraction Procedures: For Polycrystalline and Amorphous Materials $2^{\text {nd }}$ ed., (Harold P. Klug, Leroy E. Alexander, JOHN WILEY \& SONS, New York, 1967)", "Elements of X-ray Diffraction $2^{\text {nd }}$ ed. (B. D. Cullity, Addison-Wesley, Massachusetts, 1978)", if we suppose small uniform cubic crystallite, the crystallite size is calculated by Scherrer's equation;
$L=\frac{0.94 \lambda}{\beta \cos \theta}$
θ : angle of diffraction peak, λ : wavelength of X-ray, L : diameter of cubic crystallite, β : full width of half maximum (FWHM) of specific peak.
β is calculated by the following equation;
$\beta^{2}=B_{M}^{2}-B_{S}^{2}$
B_{M} : measured FWHM, B_{S} : FWHM of standard sample (crystallite size > 100 nm)

In this study, polycrystalline silicon powder with particle size of $5 \mu \mathrm{~m}$ (KOJUNDO Chemical Laboratory Co., Ltd., 99.9\%) was used as a standard sample. B_{S} was 0.11°, which was average FWHM of $\{111\},\{220\}$, and $\{311\}$.
The crystallite sizes of the obtained samples are calculated from Scherrer's equation using their XRD peaks. The crystallite sizes and the average particles sizes are summarized in the Table S2;

Table S2. Crystallite size of the samples calculated from Scherrer's equation and particle dimensions the particles measured from SEM images

	Crystallite size calculated from each XRD peak $/ \mathbf{n m}$	Particle size $/ \boldsymbol{\mu m}$		
Run	$\{\mathbf{0 0 2}\}$	$\{\mathbf{1 1 0 \}}$	$\{\mathbf{1 1 2 \}}$	Length \times Width
$\mathbf{N o .}$	29	23	22	1.05×0.41
1	45	30	27	2.42×0.81
2	45	29	27	3.54×1.26
3	27	19	18	n.d.
4	47	25	23	1.12×0.56
5	45	32	29	2.07×0.82
6	49	27	27	1.32×0.61
7	48	19	15	1.05×0.45
9	24			n.d.

The double-cone-shaped and ellipsoidal ZnO mesocrystals were obtained in Run Nos. 1, $2,3,5,6,7$, and 8 .

Figure S1. Bright-field TEM images and SAED patterns of a ZnO particle prepared with CU-DES (ZnO 16.7 mass\%) and aging time for 12 h (Run No. 5). Arrows in the TEM images indicate a direction along [001]

