Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2021

## Robust pyridylbenzoate metal-organic frameworks as sorbents for volatile solvents and gases

Christophe A. Ndamyabera, Nabanita Chatterjee, Clive L. Oliver, Susan A. Bourne<sup>\*</sup> Centre for Supramolecular Chemistry Research, Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa

## **Supplementary material**



Figure S1: Sorption of VOCs (large vials) into the MOF adsorbents 1d or 2d in narrow vials. The examples shown here are *1d* and iodomethane (left) and *1d* and iodobenzene (right)

| Compound                                            | 1dCH <sub>2</sub> Cl <sub>2</sub> | 1dCHCl <sub>3</sub>                 | 1dClBenz                                                           |  |
|-----------------------------------------------------|-----------------------------------|-------------------------------------|--------------------------------------------------------------------|--|
| Formula                                             | $C_{25}H_{18}Cl_2CoN_2O_4$        | $C_{25}H_{16.83}Cl_{3}CoN_{2}O_{4}$ | C <sub>30</sub> H <sub>21</sub> ClCo N <sub>2</sub> O <sub>4</sub> |  |
| Mass (g.mol <sup>-1</sup> )                         | 540.24                            | 574.52                              | 567.89                                                             |  |
| Crystal size (mm)                                   | 0.16 x 0.20 x 0.34                | 0.11 x 0.21 x 0.33                  | 0.10 x 0.13 x 0.20                                                 |  |
| Crystal system                                      | Monoclinic                        | Monoclinic                          | Monoclinic                                                         |  |
| Space group                                         | $P2_{1}/c$                        | $P2_{1}/c$                          | $P2_{1}/c$                                                         |  |
| a/(Å)                                               | 10.5973(11)                       | 10.0048(16)                         | 10.2944(16)                                                        |  |
| b/(Å)                                               | 15.3082(15)                       | 16.371(3)                           | 16.272(3)                                                          |  |
| c/(Å)                                               | 14.8848(15)                       | 15.036(3)                           | 15.248(3)                                                          |  |
| β/(°)                                               | 99.964(2)                         | 97.402(3)                           | 95.232(4)                                                          |  |
| V/(Å <sup>3</sup> )                                 | 2378.3(4)                         | 2442.3(7)                           | 2543.6(7)                                                          |  |
| T/(K)                                               | 100                               | 173                                 | 173                                                                |  |
| D (g·cm <sup>-3</sup> )                             | 1.509                             | 1.562                               | 1.483                                                              |  |
| μ(Mo-Ka) (mm <sup>-1</sup> )                        | 0.981                             | 1.066                               | 0.820                                                              |  |
| F(000)                                              | 1100                              | 1163                                | 1164                                                               |  |
| Range scanned, θ (°)                                | 1.923-28.14                       | 1.847-28.31                         | 1.834-28.26                                                        |  |
| No. reflns collected                                | 42669                             | 42591                               | 51772                                                              |  |
| No. unique reflns                                   | 5821                              | 6062                                | 6296                                                               |  |
| No. reflns with $I \ge 2\sigma(I)$                  | 4338                              | 4504                                | 4493                                                               |  |
| Parameters/restraints                               | 335/0                             | 326/0                               | 343/0                                                              |  |
| Goodness of fit, S                                  | 1.015                             | 1.019                               | 1.038                                                              |  |
| Final R indices ( $I \ge 2\sigma(I)$ )              | 0.0696                            | 0.0741                              | 0.0550                                                             |  |
| Final wR2 (all data)                                | 0.1092                            | 0.1293                              | 0.1386                                                             |  |
| Min,max e <sup>-</sup> density/(e Å <sup>-3</sup> ) | 0.646, -0.699                     | 0.674, -0.946                       | 1.282, -1.117                                                      |  |

**Table S1:** Cell parameter of crystal from sorption of chlorinated solvents.



(c)

Fig S2 (ctd)



Figure S2. TGA showing sorption capacities for halogenated solvents for (a)-(c) 1d and (d)-(f) 2d



Figure S3. PXRD of sorption products of halogenated solvents for (top) 1d and (bottom) 2d



Figure S4. Colour changes are evident on adsorption of iodine to form  $1dI_2$ 

 Table S5. Void volumes in crystal structures

|                                   | Void volume per<br>unit cell (Å <sup>3</sup> ) |
|-----------------------------------|------------------------------------------------|
| 1dCH <sub>2</sub> Cl <sub>2</sub> | 457                                            |
| 1dCHCl <sub>3</sub>               | 621                                            |
| 1dClBenz                          | 730                                            |
| $1 dI_2$                          | 644                                            |
| 1d                                | 481                                            |
| 1dI <sub>2</sub> d                | 445                                            |

Table S6. Unit cell parameters as crystals are taken through a sequence of drying and solvent sorption.\*

| Compound            | 1d          | 1dI <sub>2</sub> | 1dI <sub>2</sub> d | $1 dI_2^{**}$ | 1dI <sub>2</sub> d** | 1dI <sub>2</sub> dDMF** |
|---------------------|-------------|------------------|--------------------|---------------|----------------------|-------------------------|
| Crystal             | Monoclinic  | Monoclinic       | Monoclinic         | Monoclinic    | Monoclinic           | Monoclinic              |
| system              |             |                  |                    |               |                      |                         |
| Space               | $P2_{1}/c$  | $P2_{1}/c$       | $P2_{1}/c$         | $P2_{1}/c$    | $P2_{1}/c$           | $P2_{1}/c$              |
| group               |             |                  |                    |               |                      |                         |
| a/(Å)               | 10.3931(14) | 10.114(3)        | 10.4014(11)        | 10.21         | 10.14                | 9.49                    |
| b/(Å)               | 16.027(2)   | 16.501(4)        | 16.1330(17)        | 16.89         | 16.07                | 17.84                   |
| c/(Å)               | 14.996(2)   | 14.700(4)        | 14.6878(15)        | 14.73         | 14.38                | 14.63                   |
| β/(°)               | 98.243(2)   | 97.159(4)        | 98.482(2)          | 96.9          | 97.7                 | 92.12                   |
| V/(Å <sup>3</sup> ) | 2472.2(6)   | 2434.3(11)       | 2437.7(4)          | 2524          | 2323                 | 2475                    |

\* 1dI<sub>2</sub> prepared on exposing 1d on iodine in 25 days, was submerged into methanol in vial for four days and methanol was refreshed two times to form  $1dI_2d$ . The latter was again submerged in DMF in vial to form 1dI<sub>2</sub>d\_DMF.

\*\* Only a cell check done, hence the data is not as precise as for those crystals where full refinement was carried out.

Table S7. Properties of halogenated VOCs used in sorption experiments<sup>a</sup>

| Guest molecules                 | Boiling    |                               | Solvent molecular                     |
|---------------------------------|------------|-------------------------------|---------------------------------------|
|                                 | point (°C) | Density (g cm <sup>-3</sup> ) | volume (A <sup>3</sup> ) <sup>b</sup> |
| CH <sub>2</sub> Cl <sub>2</sub> | 39.6       | 1.33                          | 106                                   |
| CH <sub>2</sub> Br <sub>2</sub> | 97.0       | 2.5                           | 115                                   |
| $CH_2I_2$                       | 181        | 3.32                          | 134                                   |
| CHCl <sub>3</sub>               | 61.2       | 1.49                          | 133                                   |
| CHBr <sub>3</sub>               | 149.1      | 2.89                          | 145                                   |
| CHI <sub>3</sub>                | 121        | 4.01                          | 163                                   |
| Chlorobenzene                   | 132        | 1.11                          | 168                                   |
| Bromobenzene                    | 156        | 1.5                           | 173                                   |
| Iodobenzene                     | 188        | 1.83                          | 185                                   |
| Iodine                          |            | 4.93                          | 85                                    |

<sup>a</sup> Density and boiling point taken from pubchem.ncbi.nlm.nih.gov =  $\frac{Molecular Weight}{Molecular Weight}$ 

<sup>b</sup> Molecular volume of solvent

 $N_A \times Density$ 

| Table S8: | Selected | torsion | angles. |
|-----------|----------|---------|---------|
|-----------|----------|---------|---------|

| Compound         | 1d        | 1dI <sub>2</sub> | 1dI <sub>2</sub> d | 1dCH <sub>2</sub> Cl <sub>2</sub> | 1dCHCl <sub>3</sub> | 1dClBenz  |
|------------------|-----------|------------------|--------------------|-----------------------------------|---------------------|-----------|
| 34pba:           |           |                  |                    |                                   |                     |           |
| C3A-C4A-C8A-C12A | 157.3(4)  | 139.5(4)         | 153.8(3)           | 156.5(3)                          | 135.0(3)            | -138.8(3) |
| C3A-C4A-C8A-C121 | 145.6(4)  | 179.6(4)         | -153.8(3)          |                                   |                     |           |
| 01A-C1A-C2A-C7A  | -178.8(4) |                  | 178.7(3)           | 174.8(3)                          | -179.1(2)           | 177.8(3)  |
| 44pba:           |           |                  |                    |                                   |                     |           |
| C4B-C5B-C8B-C12B | 154.47(4) | 163.0(4)         | -166.6(3)          | -159.0(3)                         | 151.7(3)            | 157.0(3)  |
| C4B-C5B-C8B-C121 | -172.1(4) |                  | 160.7(3)           |                                   |                     |           |
| O1B-C1B-C2B-C7B  | -157.2(4) | -179.4(4)        | 154.4(3)           | 162.2(3)                          | -171.5(3)           | -177.9(3) |
| O1B-C1B-C2B-C71  | 155.1(4)  |                  | -161.3(3)          |                                   |                     |           |



Figure S5. Isothermal desorption curves







Figure S6: Arrhenius plots for desorption in CH<sub>2</sub>Cl<sub>2</sub>, CH<sub>2</sub>Br<sub>2</sub>, and I<sub>2</sub>