Electronic Supporting Information (ESI)

Template-free formation of one-dimensional mesoporous ZnMn₂O₄ tube-in-tube

nanofibers towards Lithium-ion batteries as anode materials

Jingxuan Wei,[†] Senyang Xu,[†] Zhaolin Tan, Linrui Hou,* Changzhou Yuan*

School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P.R.

China

Corresponding authors:

E-mail: mse_houlr@ujn.edu.cn (Prof. L.R. Hou)

mse_yuancz@ujn.edu.cn; ayuancz@163.com (Prof. C.Z. Yuan)

[†] These authors equally contributed to the work.

Fig. S1 (a-c) TEM images of the ZMO NTs.

Fig. S2 (a, b) Nitrogen adsorption/desorption isotherms and (c, d) pore-size distribution plots of (a, c) ZMO TiT NFs and (b, d) ZMO NTs.

Fig. S3 (a, b) TEM images of the ZMO TiT NFs electrode after 300 cycles at 0.5 A

 g^{-1} .

Fig. S4 Equivalent circuit model for Nyquist plots in Fig. 4f.

Table S1 Corresponding EIS fitted date for the ZMO TiT NFs and ZMO NTs

Electrode	R _s (ohm)	R _{ct} (ohm)	R _f (ohm)		
ZMO TiT NFs	1.3	151.7	4.1		
ZMO NTs	1.6	204.6	6.2		

Tabl	e S2	Comp	parison	in (cycling	perf	ormance	of th	e ZMO	TiT	NFs	with	other	ZMO-
------	------	------	---------	------	---------	------	---------	-------	-------	-----	-----	------	-------	------

based anodes

	Current		Reversible		
Sample	density	Cycle number	capacity	Ref.	
	(mA g ⁻¹)		(mAh g ⁻¹)		
	500	200	938.9	This	
ZMO TTT NFs	2000	1000	564.6	work	
	200	300	750.4	0.1	
$ZnMn_2O_4$ microtubules	500	300	535.3	51	
	100	90	716	G2	
Nano-ZnMn ₂ O ₄	1000	1200	500	82	
Yolk-shell					
MnO@ZnMn2O4/N-C	1000	200	595	S 3	
nanorods					
ZnMn ₂ O ₄ micro-belts	500	150	731	S4	
2 τ	1000	350	372		
ZnMn ₂ O ₄ nano-peanuts	2000	200	516	S5	
- · ·					
MWCNT/ZnMn ₂ O ₄	1600	1000	527	S 6	
Porous	500	150	820		
ZnMn ₂ O ₄ /biocarbon		100	020	S 7	
microsphere	1000	650	550		
Core-shell ZnMn ₂ O ₄	50	100	803	S 8	
nanosheets@carbon	1000	200	505		
nanotubes	1000	200	595		
Loaf-like ZnMn ₂ O ₄	500	100	517	S 9	
ZnMn ₂ O ₄ hollow	400	100	607	S10	
microspheres					
ZnMn ₂ O ₄ microspheres	100	100	602	S11	
ZnMn ₂ O ₄ /AC	100	50	714	S12	
ZnMn ₂ O ₄ nanoparticles	200	160	745	S13	
ZnMn ₂ O ₄ /N-doped graphene	500	200	747	S14	

References

- S1 X. Luo, X. Zhang, L. Chen, L. Li, G. Zhu, G. Chen, D. Yan, H. Xu and A. Yu, ACS Appl. Mater. Interfaces, 2018, 10, 33170-33178.
- S2 T. Zhang, Y. Gao, H. Yue, H. Qiu, Z. Guo, Y. Wei, C. Wang, G. Chen and D. Zhang, *Electrochim. Acta*, 2016, **198**, 84-90.
- S3 M. Zhong, D. Yang, C. Xie, Z. Zhang, Z. Zhou and X.-H. Bu, *Small*, 2016, 12, 5564-5571.
- S4 S. Zhu, Q. Chen, C. Yang, Y. Zhang, L. Hou, G. Pang, X. He, X. Zhang and C. Yuan, *Int. J. Hydrog. Energy*, 2017, 42, 14154-14165.
- S5 J. Zou, B. Liu, H. Liu, Y. Ding, T. Xin and Y. Wang, *Mater. Res. Bull.*, 2018, 107, 468-476.
- S6 W. Yao, J. Xu, J. Wang, J. Luo, Q. Shi and Q. Zhang, ACS Sustain. Chem. Eng., 2015, 3, 2170-2177.
- S7 J. Chen, W. Liu, S. Liu, H. Wang, Y. Zhang and S. Chen, *Chem. Eng. J.*, 2017, 308, 1200-1208.
- S8 C. Yuan, L. Zhang, S. Zhu, H. Cao, J. Lin and L. Hou, *Nanotechnology*, 2015, 26, 145401.
- S9 Z. Bai, N. Fan, C. Sun, Z. Ju, C. Guo, J. Yang and Y. Qian, *Nanoscale*, 2013, 5, 2442-2447.
- S10 L. Zhou, H. B. Wu, T. Zhu and X. W. Lou, J. Mater. Chem., 2012, 22, 827-829.
- S11 W. Dang, F. Wang, Y. Ding, C. Feng and Z. Guo, J. Alloys Compd., 2017, 690, 72-79.

- S12 L. Yin, Z. Zhang, Z. Li, F. Hao, Q. Li, C. Wang, R. Fan and Y. Qi, Adv. Funct. Mater., 2014, 24, 4176-4185.
- S13 C. Feng, W. Wang, X. Chen, S. Wang and Z. Guo, *Electrochim. Acta*, 2015, **178**, 847-855.
- S14 D. Wang, W. Zhou, Y. Zhang, Y. Wang, G. Wu, K. Yu and G. Wen, *Nanotechnology*, 2016, 27, 045405.