Supporting Information

Novel TCNQ-stacking motifs in (12-crown-4)-complexes of Alkali Metal TCNQ Salts

Bingjia Yan,^{a†} Peter N. Horton,^a Simon C. Weston,^{a‡} Andrea E. Russell,^a and Martin C. Grossel^{a*}

^a Chemistry Department, University of Southampton, Highfield, Southampton, SO17 1BJ, UK

[†] Current address: Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany

[‡] Current address: Corporate Strategic Research, ExxonMobil Research & Engineering Company, Annandale, NJ 08801, USA

* To whom correspondence should be addressed E-mail: M.C.Grossel@soton.ac.uk

Index

Fig. S1 Side (a) and top (b) views of the sheets of face-to-face π -stacked columns of TCNQ dimers formed by
(12-crown-4) ₂ Na(TCNQ) ₂ (4), revealing the long-axis slipped of the TCNQ dimer. This packing motif is
consistent with what Akutagawa and co-workers reported ¹ 2
Fig. S2 Side (a) and top (b) views of the sheets of face-to-face π -stacked columns of TCNQ dimers formed by
(12-crown-4) ₂ K(TCNQ) ₂ (5), revealing the long-axis slipped of the TCNQ dimer2
Fig. S3 Side (a) and top (b) views of the packing motif of the alternating infinite columns of TCNQ units and
the corresponding cation barrels in $(12$ -crown-4) ₂ Na(TCNQ) ₂ (4)
Fig. S4 Side (a) and top (b) views of the packing motif of the alternating infinite columns of TCNQ units and
the corresponding cation barrels in (12-crown-4) ₂ K(TCNQ) ₂ (5)
Table S1. Crystallographic information of TCNQ complexes 1-5 in this study
Fig. S5 A fully labelled plot of the moieties within (12-crown-4) ₂ Li(TCNQ) (1) in this study6
Fig. S6 A fully labelled plot of the moieties within (12-crown-4) ₂ Na(TCNQ) (2) in this study6
Fig. S7 A fully labelled plot of the moieties within (12-crown-4) ₂ Li(TCNQ) ₂ (3) in this study7
Fig. S8 A fully labelled plot of the moieties within (12-crown-4) ₂ Na(TCNQ) ₂ (4) in this study
Fig. S9 A fully labelled plot of the moieties within $(12$ -crown-4) ₂ K(TCNQ) ₂ (5) in this study9
Reference

Fig. S1 Side (a) and top (b) views of the sheets of face-to-face π -stacked columns of TCNQ dimers formed by (12-crown-4)₂Na(TCNQ)₂ (4), revealing the long-axis slipped of the TCNQ dimer. This packing motif is consistent with what Akutagawa and co-workers reported¹

Fig. S2 Side (a) and top (b) views of the sheets of face-to-face π -stacked columns of TCNQ dimers formed by (12-crown-4)₂K(TCNQ)₂ (5), revealing the long-axis slipped of the TCNQ dimer

Fig. S3 Side (a) and top (b) views of the packing motif of the alternating infinite columns of TCNQ units and the corresponding cation barrels in (12-crown-4)₂Na(TCNQ)₂ (4)

Fig. S4 Side (a) and top (b) views of the packing motif of the alternating infinite columns of TCNQ units and the corresponding cation barrels in (12-crown-4)₂K(TCNQ)₂ (5)

Compound reference	1	2	3	4	5
Empirical formula	C ₂₈ H ₃₆ LiN ₄ O 8	$\mathrm{C}_{28}\mathrm{H}_{36}\mathrm{N}_4\mathrm{NaO}_8$	C ₄₀ H ₄₀ LiN ₈ O 8	$\mathrm{C}_{40}\mathrm{H}_{40}\mathrm{N}_8\mathrm{NaO}_8$	C40H40KN8O8
Formula weight	563.55	579.60	767.74	783.79	799.90
Temperature/K	100	120	100	100	100
Crystal system	Monoclinic	Monoclinic	Triclinic	Triclinic	Triclinic
Space group	C2/c	C2/c	P-1	P-1	P-1
a/Å	16.8468(3)	17.191(2)	8.2066(4)	8.1103(2)	8.0221(2)
b/Å	20.5523(4)	20.518(2)	13.7299(6)	13.6858(4)	13.6455(3)
c/Å	8.3102(2)	8.3079(9)	17.8792(8)	17.7029(5)	18.3816(5)
α/°	90	90	72.441(4)	78.737(2)	80.507(2)
β/°	90.541(2)	90.131(6)	83.006(4)	86.244(2)	85.505(2)
γ/°	90	90	86.623(4)	85.714(2)	85.457(2)
Volume/Å ³	2877.20(10)	2930.4(5)	1905.87(16)	1919.11(9)	1973.99(9)
Z	4	4	2	2	2
Reflections collected	24070	8484	23161	24017	25643
Independent reflections	2545	3351	8699	8743	9014
	R _{int} =0.0600	R _{int} =0.1059	R _{int} =0.0517	R _{int} =0.0224	R _{int} =0.0241
	R _{sigma} =0.0304	R _{sigma} =0.1351	R _{sigma} =00872	R _{sigma} =0.0302	R _{sigma} =0.0299
Data/restraints/parameters	2545/474/296	3351/544/295	8699/0/514	8743/0/514	9014/0/538
Final R indexes [I>= 2σ (I)]	R ₁ =0.0388	R ₁ =0.0839	R ₁ =0.0529	R ₁ =0.0375	R ₁ =0.0405
	wR ₂ =0.0929	wR ₂ =0.1982	wR ₂ =0.0987	wR ₂ =0.0879	wR ₂ =0.0976
Final R indexes [all data]	R ₁ =0.0554	R ₁ =0.1905	R ₁ =0.1237	R ₁ =0.0583	R ₁ =0.0597
	wR ₂ =0.1014	wR ₂ =0.2922	wR ₂ =0.1151	wR2=0.0946	wR ₂ =0.1042
Deposition number	2101940	2101941	2101942	2101943	2101944

Table S1. Crystallographic information of TCNQ complexes 1-5 in this study

Fig. S5 A fully labelled plot of the moieties within (12-crown-4)₂Li(TCNQ) (1) in this study.

Fig. S6 A fully labelled plot of the moieties within (12-crown-4)₂Na(TCNQ) (2) in this study.

Fig. S7 A fully labelled plot of the moieties within (12-crown-4)₂Li(TCNQ)₂ (3) in this study.

Fig. S8 A fully labelled plot of the moieties within (12-crown-4)₂Na(TCNQ)₂ (4) in this study.

Fig. S9 A fully labelled plot of the moieties within (12-crown-4)₂K(TCNQ)₂ (5) in this study.

Reference

(1) K. Sambe, N. Hoshino, T. Takeda, T. Nakamura, T. Akutagawa, Cryst. Growth Des., 2020, 20, 3625-3634.