Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2021

## **Electronic Supplementary Information**

# Exploring Cyclohexane/Piperazine-urea Motifs for Spherical Halides (X= Cl<sup>-</sup> / Br<sup>-</sup>) Recognition: Effect on Anion Coordination, Photoluminescence, and Morphological Tunability

Megha Basak, Asesh Das, Gopal Das\*

Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India

gdas@iitga.ac.in

#### Characterisation of L<sub>1</sub>



Figure S1: HRMS spectra of  $L_1$  in 1:1 water-acetonitrile in positive ionization mode.



Figure S2: <sup>1</sup>H NMR spectra of  $L_1$  in DMSO-d<sub>6</sub> at room temperature.



Figure S3: <sup>13</sup>C NMR of  $L_1$  in DMSO-d<sub>6</sub> at room temperature.



Figure S4: FTIR spectrum of  $L_1$  recorded in KBr pellet at room temperature.

Characterisation of L<sub>2</sub>



Figure S5: HRMS spectra of  $L_2$  in 1:1 water-acetonitrile in positive ionization mode.



Figure S6: <sup>1</sup>H NMR spectra of  $L_2$  in DMSO-d<sub>6</sub> at room temperature.



Figure S7: <sup>13</sup>C NMR of L<sub>2</sub> in DMSO-d<sub>6</sub> at room temperature.



Figure S8: FTIR spectrum of L<sub>2</sub> recorded in KBr pellet at room temperature.

Characterisation of complex 1a



Figure S9: <sup>1</sup>H NMR spectra of chloride complex of  $L_1(1a)$  in DMSO-d<sub>6</sub> at room temperature.



Figure S10: FTIR spectrum of chloride complex of  $L_1(1a)$  recorded in KBr pellet at room temperature.

Characterisation of complex 1b



Figure S11: <sup>1</sup>H NMR spectra of bromide complex of  $L_1(1b)$  in DMSO-d<sub>6</sub> at room temperature.



Figure S12: FTIR spectrum of bromide complex of  $L_1(1b)$  recorded in KBr pellet at room temperature.



Figure S13: Comparative PXRD analysis of  $L_1$  varying the chain length of halogen salts (a). in presence of TBACl, TEACl and NH<sub>4</sub>Cl. (b) in presence of TBABr, TEABr and NH<sub>4</sub>Br.

### Characterisation of complex 2a



Figure S14: <sup>1</sup>H NMR spectra of chloride complex of  $L_2(2a)$  in DMSO-d<sub>6</sub> at room temperature.



Figure S15: FTIR spectrum of chloride complex of  $L_2(2a)$  recorded in KBr pellet at room temperature.

## Characterisation of complex 2b



Figure S16: <sup>1</sup>H NMR spectra of bromide complex of  $L_2(2b)$  in DMSO-d<sub>6</sub> at room temperature.



Figure S17: FTIR spectrum of bromide complex of  $L_2(2b)$  recorded in KBr pellet at room temperature.



Figure S18: Comparative PXRD analysis of  $L_2$  varying the chain length of halogen salts (a). in presence of TBACl, TEACl and NH<sub>4</sub>Cl. (b) in presence of TBABr, TEABr and NH<sub>4</sub>Br.



**Figure S19:** X-ray structure analysis of complex **1a** showing coordination environment of anion as well as extra stabilization through C-H<sub>aliphatic</sub>...O<sub>urea</sub> interaction with proper bond distances in Angstrom.



**Figure S20:** X-ray structure analysis of complex **1b** showing coordination environment of anion as well as extra stabilization through two C-H<sub>aliphatic</sub>...O<sub>urea</sub> with proper bond distances in Angstrom.



**Figure S21:** X-ray structure analysis of complex **2a** showing coordination environment of anion as well as extra stabilization through two C-H<sub>aliphatic</sub>...O<sub>urea</sub> with proper bond distances in Angstrom.



**Figure S22:** X-ray structure analysis of complex **2b** showing coordination environment of anion as well as extra stabilization through two C-H<sub>aliphatic</sub>...O<sub>urea</sub> with proper bond distances in Angstrom.



**Figure S23:** Partial <sup>1</sup>H NMR spectra (600 MHz, DMSO-d<sub>6</sub>) of  $L_1$  and  $L_2$  and the maximum observable shifts in urea-NH protons upon the addition of excess Cl<sup>-</sup>, Br<sup>-</sup>, I<sup>-</sup>, F<sup>-</sup> in the form of their TEA/n-TBA salts.

### Anion binding analysis by <sup>1</sup>H-NMR titrations

The <sup>1</sup>H NMR titration of  $L_1$  and  $L_2$  was performed in DMSO-d<sub>6</sub> solvent. The stock solutions of the compound ( $L_1$  and  $L_2$ ; 10 mM), tetrabutyl ammonium Chloride (TBACl; 2 M) and tetrabutyl ammonium Bromide (TBABr; 2 M) were prepared in DMSO-d<sub>6</sub>. The TBACl and TBABr were used as the source of Cl<sup>-</sup> and Br<sup>-</sup> ion. The changes in chemical shift ( $\Delta\delta$ ) value of the N-H protons of the urea-moieties were analysed. Significant extents of chemical shift ( $\Delta\delta$ ) of both N-H protons were observed during titration with chloride solution. All <sup>1</sup>H NMR spectra were stacked through the MestReNova software. Changes in chemical shift against the concentration of Cl<sup>-</sup> ion were fitted using BindFit v 0.5 program.<sup>1</sup>



**Figure S24**: (a) Expanded partial <sup>1</sup>H NMR spectra of  $L_1$  upon titration with n-TBACl in DMSO-d<sub>6</sub>. (b) Showing the raw vs. fitted data (fitted to 1:1 NMR binding data) (top) and the corresponding residual plot (bottom). Binding constant (K) = 4.50 M<sup>-1</sup> (Ref. 2).

(http://app.supramolecular.org/bindfit/view/4fc6d6b1-2de2-43c5-af72-bbd18e997501)



Figure S25: (a) Expanded partial <sup>1</sup>H NMR spectra of  $L_1$  upon titration with n-TBABr in DMSO-d<sub>6</sub>.



ppm 9.8 9.7 9.6 9.5 9.4 9.3 9.2 9.1 9.0 8.9 8.8 8.7 8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4

**(b)** 



**Figure S26**: (a) Expanded partial <sup>1</sup>H NMR spectra of  $L_2$  upon titration with n-TBACl in DMSO-d<sub>6</sub>. (b) Showing the raw vs. fitted data (fitted to 1:1 NMR binding data) (top) and the corresponding residual plot (bottom). Binding constant (K) = 12.96 M<sup>-1</sup> (Ref. 2).

(http://app.supramolecular.org/bindfit/view/df8b0a98-517a-4b88-88d5-cd99e39c582d)



Figure S27: (a) Expanded partial <sup>1</sup>H NMR spectra of  $L_2$  upon titration with n-TBABr in DMSO-d<sub>6</sub>.



Figure S28: (a) UV-Vis changes of  $L_1$  (2  $\mu$ M) (b)  $L_2$  (2  $\mu$ M) in several solvents at room temperature.



Figure S29: The scatter plot of N-H···A angle vs. H···A distance of the hydrogen bonds in the complexes (1a, 1b, 2a, 2b).



Figure S30: ORTEP diagram of 1a.



Figure S31: ORTEP diagram of 1b.



Figure S32: ORTEP diagram of L<sub>2</sub>.



Figure S33: ORTEP diagram of 2a.



Figure S34: ORTEP diagram of 2b.



Figure S35: Solid state fluorescence spectra of  $L_1$  and  $L_2$ .

## **References:**

1. D. Brynn Hibbert and P. Thordarson, Chem Commun, 2016, 52, 12792-12805.

2. http://supramolecular.org

| Complex | D-H…A          | d(D…H)/Å | d(H…A)/Å | d(D…A)/Å | <d-h····a th="" °<=""><th>Symmetry codes</th></d-h····a> | Symmetry codes |
|---------|----------------|----------|----------|----------|----------------------------------------------------------|----------------|
| 1a      | N1-H1N…C11     | 0.86     | 2.58     | 3.367(4) | 153                                                      | x,1/2-y,1/2+z  |
|         | N2-H2N…C11     | 0.86     | 2.35     | 3.192(4) | 167                                                      | x,1/2-y,1/2+z  |
|         | С6-Н6…О1       | 0.93     | 2.36     | 2.930(5) | 119                                                      | x, y, z        |
|         | C11-H11A … Cl1 | 0.97     | 2.81     | 3.763(5) | 169                                                      | x, y, z        |
|         | C23-H23A… O1   | 0.97     | 2.56     | 3.426(5) | 148                                                      | x, y, z        |
| 1b      | N1-H1···Br01   | 0.86     | 2.65     | 3.459(3) | 157                                                      | x,1/2-y,-1/2+z |
|         | N2-H2A…Br01    | 0.86     | 2.46     | 3.309(2) | 169                                                      | x,1/2-y,-1/2+z |
|         | С4-Н4…О3       | 0.93     | 2.36     | 2.935(4) | 120                                                      | x,y,z          |
|         | C14-H14B…Br01  | 0.97     | 2.87     | 3.816(3) | 167                                                      | x,y,z          |
|         | C26-H26A…O3    | 0.97     | 2.54     | 3.412(4) | 150                                                      | x,y,z          |
| 2a      | N1-H1N…C11     | 0.86     | 2.32     | 3.136(6) | 160                                                      | x,y,z          |
|         | N2-H 2N…Cl1    | 0.86     | 2.56     | 3.315(6) | 147                                                      | x,y,z          |
|         | С5-Н5…О1       | 0.93     | 2.31     | 2.865(8) | 118                                                      | x,y,z          |
|         | C14-H 14A… Cl1 | 0.97     | 2.81     | 3.745(8) | 163                                                      | x,1/2-y,-1/2+z |
|         | C17-H17B…O1    | 0.97     | 2.45     | 3.388(7) | 162                                                      | x,1/2-y,1/2+z  |
|         | C28-H28B… O1   | 0.97     | 2.58     | 3.286(8) | 130                                                      | x,1/2-y,1/2+z  |
|         | С30-Н 30А… С11 | 0.97     | 2.73     | 3.637(6) | 157                                                      | x,y,z          |
| 2b      | N1-H1…Br1      | 0.86     | 2.47     | 3.292(6) | 161                                                      | x,y,z          |
|         | N2-H2···Br1    | 0.86     | 2.66     | 3.439(8) | 152                                                      | x,y,z          |

**Table S1**: Hydrogen bonding distances (Å) and Bond angles (°) in the neutral anion-receptor complexes:

|   | C7-H7…O1      | 0.93 | 2.29 | 2.850(11) | 118 | x,y,z          |
|---|---------------|------|------|-----------|-----|----------------|
|   | C13-H13B… Br1 | 0.97 | 2.90 | 3.863(10) | 174 | x,1/2-y,-1/2+z |
|   | C22-H22A… Br1 | 0.97 | 2.92 | 3.850(10) | 161 | x,1+y,z        |
|   | C27-H27A… Br1 | 0.97 | 2.85 | 3.755(8)  | 156 | x,y,z          |
|   | C30-H30B…O1   | 0.97 | 2.47 | 3.399(10) | 160 | x,1/2-y,1/2+z  |
| 2 | N1-H1N… O1    | 0.86 | 2.06 | 2.893(5)  | 162 | x,1/2-y,1/2+z  |
|   | N2-H2N… O1    | 0.86 | 2.26 | 3.035(6)  | 149 | x,1/2-y,1/2+z  |
|   | N3-H3N…N2     | 0.98 | 2.57 | 3.205(6)  | 123 | x,y,z          |
|   | С6-Н6…О1      | 0.93 | 2.47 | 2.933(6)  | 111 | x,y,z          |
|   |               |      |      |           |     |                |

Table S2: Contact contributions from the  $d_{norm}$  surface areas of dipodal segments in free receptors and in anion complexes.

| Bond     | 1a      | 1b      | 2a      | 2b      | L <sub>2</sub> |
|----------|---------|---------|---------|---------|----------------|
| C…H/H…C  | 3.3/2.4 | 3.4/2.5 | 3.0/2.8 | 4.4/3.0 | 2.5/2.0        |
| O…H/ H…O | 7.0/6.1 | 7.2/6.3 | 0.2/0.2 | 0.2/0.2 | 3.7/3.3        |
| F…H      | 0       | 0       | 9.4     | 9.5     | 15.6           |
| N…H      | 1.1     | 1.1     | 1.0     | 0.9     | 1.0            |
| H…H      | 65.4    | 63.4    | 55.3    | 53.6    | 31.0           |
| Cl…H     | 5.0     | 0       | 3.5     | 0       | 0              |
| BrH      | 0       | 5.1     | 0       | 4.0     | 0              |