Electronic Supplementary Information

Structurally Characterised New Twisted Conformer for Cyclen, Controlled by Metal ion Complexation as Seen in Ni^{II} and Cu^{II} Complexes with halides and pseudohalides.

Abhineet Verma,^{a,b} Nattamai Bhuvanesh,^c Joseph Reibenspies,^c Sakharam B. Tayade,^d Avinash S. Kumbhar,^d Kateryna Bretosh,^e Jean-Pascal Sutter,^e Sailaja S. Sunkari^{a*}

^a Department of Chemistry, Mahila Maha Vidyalaya, Banaras Hindu University, Varanasi-221005, India.

^b Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India.

^c X-ray Diffraction Laboratory, Department of Chemistry, Texas A & M University. USA

 $^{\rm d}$ Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India.

^e LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France.

Figure S1. PXRD patterns for the title complexes (a) [Ni1]; (b) [Ni2]; (c) [Ni3]; (d) [Ni4]; (e) [Cu1]; (f) [Cu2]; (g) [Cu3]; (h) [Cu4]. The experimental patterns of each complex is matched with its corresponding simulated PXRD pattern from the crystal data. The experimental PXRD pattern of complex [Cu2] is only presented as its simulated pattern is not available due to lack of SCXRD data.

Figure S2. FTIR spectra for the title complexes.

Table S1. Selected	d bond lengths (Å), angles (°)	and importan	t hydrogen bondin	g interactior	ns (Å) for title	complexes	
				[Ni1]				
			I	Bond lengths (Å)				
Ni1-N1	2.085(11)	Ni1-N2	2	2.117(10)	Ni1-N3	2.072(12)	Ni1-N2	¹ 2.117(10)
Ni1-N4	2.100(6)	Ni1-Ne	511	2.108(5)	Ni1 -N2 ^{II}	2.135(10)	Ni1-N3	^{II} 2.087(11)
Ni1-N2 ^{III}	2.135(11)	Ni1-Ne	5	2.108(5)	Ni1-N4 ^{II}	2.100(6)	Ni1-N1	^{II} 2.079(11)
Ni1-Ni2	5.313(11)							
				Bond angles (°)				
N1-Ni1-N2	85.0(5)	N2-Ni-	N3	79.3(4)	N3-Ni	i-N2 ¹		79.3(4)
N2 ¹ -Ni-N1	85.0(5)	N2-Ni-	N4	104.2(5)	N4-Ni	i-N6 ^{II}		87.6(2)
N6 ^{II} -Ni-N2 ^I	96.7(6)	N2 ¹ -Ni	-N2	153.6(10)) N1"-N	li1-N2 ^{II}		85.0(5)
N2 ^{II} -Ni1-N3 ^{II}	79.3(4)	N3 ^{II} -Ni	i1-N2 ^{III}	79.3(4)	N2 ¹¹¹ -1	Ni1 ^{II} -N1 ^{II}		85.0(5)
N2 ^{II} -Ni1 ^{II} -N4 ^{II}	105.1(7)	N4 ^{II} -Ni	i1 ¹¹ -N6	87.6(2)	N6-Ni	i1 ¹¹ -N2 ¹¹¹		96.7(6)
N2 ^{III} -Ni1 ^{II} -N2 ^{II}	153.6(10)							
				[Ni2]				
				Bond lengths (Å)				
Ni-N1	2.084(3)	Ni-N2	2.127(3)	Ni-N3	2.081(3)		Ni-N4	2.130(3)
Ni-N5	2.109(3)	Ni-N8	2.066(3)					
				Bond angles (°)				
N1-Ni-N2	81.18(12)		N2-Ni-N3	83.63(13)	N3	-Ni-N4	83.32(1	3)
N4-Ni-N1	81.15(12)		N1-Ni-N5	89.50(13)	N5	-Ni-N8	84.88(1	3)
N8-Ni-N3	88.09(13)		N3-Ni-N1	97.65(13)				
			Hydrog	en Bonding Interac	tions			
D-H····A	D-H		Н…А	L	D····A		<(DH/	A)
N1-H1N10 ¹	1.00		2.10		3.023(5)		152.4	
N4-H4N10 ¹¹	1.00		2.23		3.167(5)		156.3	
N3-H3····N7 ^{III}	1.00		2.07		3.046(5)		164.2	
C8-H8BN7 ^{IV}	0.99		2.67		3.590(5)		154.0	

	[Ni3]								
N: N1	2 000(7)	N: NO	B0	nd lengths (A)	2 1 0 2 (7)	N: N/4		2 1 5 0 (7)
NI-NI	2.089(7)	NI-NZ	2.130(7)	N1-N	3	2.102(7)	N1-N4		2.158(7)
N1-N5	2.085(8)	N1-N6	2.0/1(/) Pc	nd angles (๏ๅ				
N1-Ni-N2	82 6(3)	N	DU 2_Ni_N3	ind angles (J 81 73(9)		,	13-Ni-N4	81 61(5)
N4-Ni-N1	82.0(3)	N.	2-NI-N5 1-Ni-N5	c ç	24.13(10)		1	15-Ni-N8	87 630(3)
N8-Ni-N3	87 23(10)	N N	3-Ni-N1	1	101 14(6)		1	13-111-110	07.030(3)
	07.25(10)	11	Hvdrogen	Bonding In	teraction	5			
D-H····A	D-H		нА	20114111911		DA	<	(DHA)	
N2-H1····S2 ^I	1.00		2.62			3.481(4)	1	.44.3	
N4-H4S2 ^{II}	1.00		2.870			3.553(4)	1	56.10	
N1-H1····S2 ^{III}	1.00		2.753			3.620(4)	1	45.16	
N3-H3····S1 ^{IV}	1.00		2.76			3.578(6)	1	58.60	
				[Ni4]					
			Bo	nd lengths (Å)				
Ni-N1	2.060(4)	Ni-N2	2.105(3)	Ni-N3 2.	036(4)	Ni-N2 ^I 2	.105(3)	Ni-01	2.157(4)
Ni-02	2.076(4)								
			Be	ond angles (ື)				
N1-Ni-N2	82.74(9)	N2-Ni-N3	85.03	(9)	N3-Ni-N	2 ¹ 85.03(9)	N2 ¹ -Ni-N1	. 82	2.74(9)
N1-Ni-N3	102.40(17)	N1-Ni-01	99.17	(9)	01-Ni-0	2 62.52(13)	02-Ni-N3	9	9.17(9)
			Hydrogen	Bonding In	teraction	5			
D-H····A	D-H		Н••••А			D····A	<	(DHA)	
N1-H1····Br1	1.00		2.40			3.346(4)	1	57.2	
				[Cu1]	0				
			Bo	nd lengths (Å)				
Cu-N1	2.0119(12) Cu-N2	2.0217(12)	Cu-N3	2.0328(12)	Cu-N	14 2.0395(12	:)	Cu-N5	2.1032(12)
			Bo	ond angles (°)				
N1-Cu-N2	86.18(5)	N2-Cu-N3	85.77	(5) Na	3-Cu-N4	85.85(5)	N4-Cu-N	1	86.42(5)
	D II		Hydrogen	Bonding in	teraction	S A			
	D-H		H····A			D····A	<	(DHA)	
N1-H1····N10 [·]	0.98		2.03			2.9734(18)	1	62.0 E7.2	
N4-H4N10	0.98		2.12			2 9718(17)	1	535	
	0.90		2.00	[Cu3]		2.7710(17)			
			Bo	nd lengths ((Å)				
Cu1A-N1A	2.021(5)	Cu1A-N2A	2.031	(5) Cu	1A -N3A	2.025(5)	Cu1A -N	4A	2.014(5)
Cu1A-S1A	2.4555(19)	Cu1B-N1B	2.033	(5) Cu	1B -N2B	2.038(5)	Cu1B -N	3B	2.027(5)
Cu1B -N4B	2.041(5)	Cu1B -N5B	2.077	(6)					
			Bo	ond angles (°)				
N1A-Cu1A-N2A	85.6(2)	N2A	-Cu1A-N3A	8	6.1(2)	N3A-Cu1A-N	I4A	8	5.7(2)
N4A-Cu1A-N1A	85.5(2)	N1B	-Cu1B-N2B	8	5.4(2)	N2B-Cu1B-N	13B	8	4.8(2)
N3B-Cu1B-N4B	85.2(2)	N4B	-Cu1B-N1B.	8	5.5(2)				
			Hydrogen	Bonding Int	eractions				
D-H····A	D-H		Н····А			D····A	<	(DHA)	
N4A-H4AS10	C ^I 098		2.37			3.318(5)	1	63.3	
N1B-H1B····N1	C ^I 0.98		2.05			2.957(8)	1	53.2	
N3A-H3AS11	D ^{II} 0.98		2.49			3.439(6)	1	62.2	
N3B-H3BS1I	D ^{III} 0.98		2.40			3.338(5)	1	59.6	
				[Cu4]	. o _				
			Bo	nd lengths (A)				
Cu-N1	2.031(2)		-	Cu-	Br1			2.5313(5)	
NI C. NII	05 40(2)		Bo	ond angles (~J				
N1-Cu-N1	85.10(3)			D 11 -					
	D U		Hydrogen	Bonding Int	eractions				
D-H····A	D-H		H····A			D····A	<	(DHA) 49 5	
INT-HTBL	0.89		2.53			3.319(2)]	40.3	

Symmetry codes used to generate equivalent atoms: ¹ = x, -y, z; ^{II} = -x+1, y, -z+1; ^{III} = -x+1, -y, -z+1 for [**Ni1**]; ¹/2-X, 1-Y, 1/2+Z; ^{IIX}, 3/2-Y, 1/2+Z; ^{III}-1/2+X, 3/2-Y, 1-Z; ^{IIV}-1, 2-X; ^{IV}-1, 2-X; ^{IIV}-1, 2-X; ^{IIV}-1,

Table S3.	le S3. Selected distances and angles for reported complexes of Ni(II) with cyclen.					
S.No.	Complex	Ni-N _{cy} (Å)	Ni-Ni (Å)	Dihedral angle (º)		
1.	[Ni(cyclen)] ₂ [Pt(CN) ₄] ₂ ·6H ₂ O ^[S1]	2.07-2.14	7.462	39.300 38.291		
2.	[Ni(cyclen)] ₂ [Ni(CN) ₄] ₂ ·6H ₂ O ^[S1]	2.07-2.13	7.245	38.484 38.231		
		2.02-2.11	8.610	36.217 35.829		

$[Ni_2(cyclen)_2(tp)](ClO_4)_2^{[S2]}$			
$\begin{array}{c} 0(3A) \\ 0(3A) \\ 0(2A) \\ 0(1A) \\ 0(2A) \\ 0(1A) \\$	2.07-2.12 (13) N(4) (13) (13) (14B)	8.231	37.424
$[Ni_2(trpn)_2(tp)(H_2O)_2](ClO_4)_2$ [S2]			
$\begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	2.09-2.14 → A) → TA)	9.113	36.223
$[Ni_{2}(3,3,3-tet)_{2}(tp)(H_{2}O)_{2}](ClO_{4})_{2}\cdot 2H_{2}O^{[S2]}$			
$\left[(cyclenNi)_2PdL_2 \right]^{2+ [S3]}$	2.09-2.11	10.313	38.318
[Ru ^{IV} ₄ Ni ^{II} ₂ (μ ³ -OMe) ₂ (μ-OMe) ₂ (μ-N) ₂ (μ-N ₃) ₂ (μ-	2.10-2.13	7.664	39.359

Table S4. Selected distances and dihedral angle of cyclen in reported Cu(II) complexes with cyclen.					
S.No.	Complex	Cu-Ncy (Å)	Dihedral angle (º)		

1.	AD .	2.03-2.04	1.213
2.		2.00-2.04	0.929
	d'		
	[Cu(cyclen)(CH ₃ CN)][W ₆ O ₁₉] ^[S5]		
3.	S	2.02-2.03	0.245
	\otimes \otimes		
	®		
	A Change		
	$[Cu(cyclen)(H_2O)](SO)_42(H_2O)^{[S6]}$		
4.		2.01-2.03	1.481
	$[Cu(cyclen)(H_2O)](SO)_4(H_2O)^{[S6]}$		
5.	 	2.03-2.08	1.991
	A A-a		
	$[Cu(C_{8}H_{16}N_{4}O_{7})_{7}].2(ClO_{4})^{[S7]}$		
6.		1.90-2.04	2.809
	Š.		
	1 A		
	$[Cu(cyclen)(N(CN)_2)](N(CN)_2)^{[S7]}$		

7.	P	1.98-2.03	2.422
0	CN) ₄)] ^[S7]	2 00 2 07	2 507
0.		2.00-2.07	2.597
	6 The second sec		
	[Cu(Cyclen)H ₂ O](Tpa)·3H ₂ O ^[S8]		
9.	Tpa = Dianion of Terephalic Acid)	2.02-2.06	3.725
	A ST		
	[Cu(cyclen)(adeninato)] ·ClO ₄ ·2H ₂ O ^[S8]		0.007
10.		2.00-2.04	0.006
	Sale of the second s	2.01-2.08	0.150
	$[{Cu(cyclen)}_{2}(hypoxanthinato)] \cdot (ClO_{4})_{3}[S8]$		
11.	- Lo	2.01-2.07	1.900
	and also the	2.03-2.06	0.640
	T & M M		
	the second secon		
	$[(u(cyclen)(theonbyllingto)] + (ClO_1) + 2H_O^{[S8]}$		
	$[[Cu(cyclen)(cleophynmato)]_3, (ClO_4)_3, 2H_2O^{(0)}$		

12.	©@	2.01-2.07	3.625
	⊗ Ø ♥ ♥ ↓		
	$[Cu(cyclen)(xanthinato)] \cdot (0.7ClO_4) \cdot (0.3ClO_4) \cdot 3H_2O \cdot (0.5H_2O)_3^{[S8]}$		
13.	Å	2.02-2.03	0.305
	m on KP	2.02-2.04	0.548
	>-+-C>CP[]		
14	$[Cu(cyclen)(4,4)-bipy)](ClO_4)_2^{[S9]}$	2.02.2.05	0.250
14.	Ĩ	2.02-2.05	0.359
	STA I		
	and a prove		
	č=o j 🍾		
	$[Cu(SCN)(C_8H_{20}N_4)]^{2-}[Ca(NCS)_4(H_2O)_2]\cdot 2H_2O^{[S10]}$		
15.		2.00-2.08	3.451
	8		
	1		
	1		
	$C_{\rm HI}^{1}$ (BF.) [S11]		
	L ¹ =1-(benzimidazol-2-ylmethyl)-1,4,7,10-tetraazacy-		
16.	clododecane	2.00-2.03	1.723
	Ŷ		
	6 20		
	and The		
	J PT-		
	$[Cu(Cyclen)(NO_3)]NO_3^{[S12]}$		
17.	J-2	2.01-2.30	0.023
	$[Cu(C_4N_3)(C_8H_{20}N_4)](C_4N_3)^{[S13]}$		

Reference:

[S1] Yeung, W.; Kwong, H.; Lau, T.; Gao, S.; Szeto, L.; Wong, W. Cyano-Bridged Molecular Squares: Synthesis and Structures of $[Ni(Cyclen)]_2[Pt(CN)_4]_2 \cdot 6H_2O$, $[Ni(Cyclen)]_2[Ni(CN)_4]_2 \cdot 6H_2O$ and $[Mn(Cyclen)]_2[Ni(CN)_4]_2 \cdot 6H_2O$. Polyhedron **2006**, 25 (5), 1256-1262.

[S2] Massoud, S.; Mautner, F.; Vicente, R.; Rodrigue, B. Dinuclear Terephthalato-Bridged Nickel(II) Complexes. Structural Characterization and Magnetic Properties. *Inorg. Chim. Acta* **2006**, *359* (10), 3321-3329.

[S3] Xiang, J.; Jia, L.; Man, W.; Qian, K.; Lee, G.; Peng, S.; Yiu, S.; Gao, S.; Lau, T. A Novel Triazidoruthenium (III) Building Block for the Construction of Polynuclear Compounds. *Dalton Trans.* **2012**, *41* (19), 5794.

[S4] Rohde, D.; Merzweiler, K. (1,4,7,10-Tetraazacyclododecane-K⁴N¹,N⁴,N⁷,N¹⁰) (Tetraoxidomolybdato-Ko) Copper(II) Monohydrate. *Acta Crystallogr., Sect. E: Struct. Rep. Online* **2010**, *66* (8), 894-894.

[S5] Sarma, M.; Chatterjee, T.; Das, S. A Copper–Cyclen Coordination Complex Associated with a Polyoxometalate Anion: Synthesis, Crystal Structure and Electrochemistry of [Cu(Cyclen)(MeCN)][W₆O₁₉]. *Inorg. Chem. Commun.* **2010**, *13* (10), 1114-1117.

[S6] Pérez-Toro, I.; Domínguez-Martín, A.; Choquesillo-Lazarte, D.; Vílchez-Rodríguez, E.; González-Pérez, J.; Castiñeiras, A.; Niclós-Gutiérrez, J. Lights And Shadows in the Challenge of Binding Acyclovir, A Synthetic Purine-Like Nucleoside with Antiviral Activity, At an Apical–Distal Coordination Site In Copper(II)-Polyamine Chelates. *J. Inorg. Biochem.* **2015**, *148*, 84-92.

[S7] Kong, D.; Ouyang, X.; Martell, A.; Clearfield, A. Novel Dioxotetrazamacrocyclic "Sandwich" Complexes – Synthesis and Structural Characterization. *Inorg. Chem. Commun.* **2003**, *6* (3), 317-321.

[S8] Ren, Y.; Li, J.; Zhao, S.; Zhang, F. Synthesis, Crystal Structures And Thermal Decomposition of Two Novel Supramolecular Complexes $[Ni(Cyclen)(H_2O)_2]$ (Tpa) and $[Cu(Cyclen)H_2O](Tpa)\cdot 3H_2O$ (Cyclen = 1,4,7,10–Tetraazacyclododecane, Tpa = Dianion of Terephalic Acid). *Struct. Chem.* **2005**, *16* (4), 439-444.

[S19] Massoud, S.; Druel, E.; Dufort, M.; Lalancette, R.; Kitchen, J.; Grebowicz, J.; Vicente, R.; Mukhopadhyay, U.; Bernal, I.; Mautner, F. Versatile Binding Properties of Di-Pyridyl Ligands with Cu(II) Complexes: The Syntheses, Structural Characterization and Thermal Analysis of Six New Species. *Polyhedron* **2009**, *28* (17), 3849-3857.

[S10] Lu, T.; Lin, J.; Lan, W.; Chung, C. Bis[(1,4,7,10-Tetraazacyclododecane-K₄N) (Thiocyanato-S) Copper(II)] Diaquatetrakis (Isothiocyanato-N) Calcate(2–) Dihydrate. *Acta Crystallogr. Sect. C: Cryst. Struct. Commun.* **1997**, *53* (11), 1598-1600.

[S11] Majzoub, A.; Cadiou, C.; Déchamps-Olivier, I.; Chuburu, F.; Aplincourt, M.; Tinant, B. Mono- And Bis-N-Functionalised Cyclen with Benzimidazolylmethyl Pendant Arms: Sensitive and Selective Fluorescent Probes for Zinc and Copper Ions. *Inorg. Chim. Acta* **2009**, *362* (4), 1169-1178.

[S12] Clay, R.; Murray-Rust, P.; Murray-Rust, J. Nitrato(1,4,7,10-Tetraazacyclododecane) Copper(II) Nitrate. *Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem.* **1979**, *35* (8), 1894-1895.

[S13] Luo, J.; Zhang, X.; Qiu, L.; Yang, F.; Liu, B. Crystal Structures of (1,4,7,10-Tetraazacyclododecane-K⁴N) Bis (Tricyanomethanido-KN) Nickel and (1,4,7,10-Tetraazacyclododecane-K⁴N) (Tricyanomethanido-KN) Copper Tricyanomethanide. *Acta Crystallogr. Sect. E: Cryst. Commun.* **2015**, *71* (6), 693-697.\

[S14] Kim, S.; Jung, I.; Lee, E.; Kim, J.; Sakamoto, S.; Yamaguchi, K.; Kim, K. Macrocycles Within Macrocycles: Cyclen, Cyclam, and their Transition Metal Complexes Encapsulated In Cucurbit [8] Uril. *Angew. Chem., Int. Ed.* **2001**, *40* (11), 2119-2121.

[S15] Gray, J.; Gerlach, D.; Papish, E. Crystal Structure Of (Perchlorato-Ko)(1,4,7,10-Tetraazacyclododecane-K4n)Copper(II) Perchlorate. *Acta Crystallogr. Sect. E: Cryst. Commun.* **2017**, *73* (1), 31-34.