Electronic Supplementary Information

A metal-organic framework featuring highly sensitive fluorescence sensing for Al³⁺ ions

Yang Qiao, a Zeqi Li, a Mei-Hui Yu, *a Ze Chang *a and Xian-He Bu a,b

^a School of Materials Science and Engineering, Nankai University, Tianjin 300350, China

^b College of Chemistry, State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China

Experimental section

Crystal Structure Determination.

Single crystal X-ray diffraction data of **NKM-102** was measured on a Rigaku XtaLAB MM007 CCD diffractometer at 100 K with Cu K α radiation (λ = 1.5418 Å) by ω scan mode. The structure of **NKM-102** was solved by direct methods using the *SHELXTL* program and refined by full-matrix least-squares methods with *SHELXL*.^{S1} All non-hydrogen atoms were refined with anisotropic thermal parameters. The highly disordered solvents molecules were removed through the *SUQEEZE* program in *PLATON*.^{S2} The crystallographic data of **NKM-102** were summarized in Table S1, and the selected bond lengths and angles were given in Tables S2 and S3. Full crystallographic data for **NKM-102** have been deposited with the CCDC (2090957).

These data can be obtained free of charge from the Cambridge Crystallographic www.ccdc.cam.ac.uk/data_request/cif.

Compound reference	NKM-102
Chemical formula	$C_{116}H_{96}N_6O_{30}Cd_5$
Formula Mass	2616.08
Crystal system	Triclinic
a/Å	8.9895(3)
b/Å	11.5404(3)
c/Å	33.0283(7)
χ/°	95.255(2)
3/°	96.857(2)
/ ^o	102.441(2)
Unit cell volume/Å ³	3297.64(16)
ſemperature/K	99.99(10)
Space group	Р
lo. of formula units per unit cell, Z	1
adiation type	Cu Ka
Absorption coefficient, μ/mm^{-1}	6.897
No. of reflections measured	26545
No. of independent reflections	12920
R _{int}	0.0440
Final R_I values $(I > 2\sigma(I))$	0.0668
inal $wR(F^2)$ values $(I > 2\sigma(I))$	0.1712
inal R_I values (all data)	0.0721
inal $wR(F^2)$ values (all data)	0.1748
Goodness of fit on F^2	1.049

Table S1. Crystallographic data and structure refinement of NKM-1	02 .
---	-------------

Table S2. Selected bond lengths (Å) for NKM-102.

Cd(1)-O(5)#6	2.349(4)	Cd(2)-O(2)	2.363(3)
Cd(1)-O(7)	2.218(4)	Cd(2)-O(15)	2.289(5)
Cd(1)-O(2)#6	2.372(5)	Cd(2)- $C(1)$	2.749(6)
Cd(1)-O(14)	2.301(5)	Cd(2)-C(31)	2.736(6)
Cd(1)-O(3)	2.213(6)	Cd(3)-O(11)#1	2.221(4)
Cd(1)-O(13)	2.270(8)	Cd(3)-O(11)	2.221(4)
Cd(2)-O(5)	2.479(4)	Cd(3)-O(10)#2	2.337(4)

Cd(2)-O(1)	2.441(4)	Cd(3)-O(10)#3	2.337(4)
Cd(2)-O(6)	2.316(4)	Cd(3)-N(2)#4	2.314(5)
Cd(2)-N(1)	2.278(4)	Cd(3)-N(2)#5	2.314(5)
Cd(2)-O(8)#2	2.316(4)		
	#1 3-X,3-Y,2-Z #2 +X	,1+Y,+Z #3 3-X,2-Y,2-Z	, 1
	#4 2+X,+Y,+Z #5 1-X	,3-Y,2-Z #6 +X,-1+Y,+Z	

 Table S3. Selected bond angles (°) for NKM-102.

O(8)#6-Cd(1)-O(10)#6	82.00(18)	O(7)-Cd(2)-O(10)	132.7(2)
O(1)-Cd(1)-O(8)#6	88.0(2)	O(7)-Cd(2)-C(28)	27.1(2)
O(1)-Cd(1)-O(10)#6	91.9(2)	O(7)-Cd(2)-C(43)	160.5(2)
O(1)-Cd(1)-O(15)	90.6(2)	N(1)-Cd(2)-O(8)	141.42(18)
O(1)-Cd(1)-O(14)	90.9(4)	N(1)-Cd(2)-O(9)	86.33(19)
O(15)-Cd(1)-O(8)#6	96.9(2)	N(1)-Cd(2)-O(7)	87.1(2)
O(15)-Cd(1)-O(10)#6	177.2(2)	N(1)-Cd(2)-O(23)	86.0(2)
O(11)-Cd(1)-O(8)#6	88.3(3)	O(10)-Cd(2)-C(28)	106.0(2)
O(11)-Cd(1)-O(1)	176.1(3)	O(10)-Cd(2)-C(43)	27.8(2)
O(11)-Cd(1)-O(10)#6	86.3(3)	O(13)-Cd(2)-O(8)	84.8(2)
O(11)-Cd(1)-O(15)	91.2(3)	O(13)-Cd(2)-O(9)	84.6(2)
O(11)-Cd(1)-O(14)	92.6(5)	O(13)-Cd(2)-O(7)	91.6(2)
O(8)-Cd(2)-C(43)	106.67(19)	C(43)-Cd(2)-C(28)	133.6(2)
O(9)-Cd(2)-O(8)	132.19(17)	O(10)-Cd(2)-O(9)	55.05(18)
O(9)-Cd(2)-C(28)	159.4(2)	O(5)-Cd(3)-O(5)#1	180.0
O(9)-Cd(2)-C(43)	27.3(2)	O(5)-Cd(3)-O(3)#2	98.1(2)
O(7)-Cd(2)-O(8)	54.33(18)	O(5)#1-Cd(3)-O(3)#3	98.1(2)
O(7)-Cd(2)-O(9)	171.8(2)	O(5)-Cd(3)-O(3)#3	81.9(2)
N(1)-Cd(2)-O(10)	137.7(2)	O(5)#1-Cd(3)-O(3)#2	81.9(2)
N(1)-Cd(2)-O(13)	99.2(2)	O(5)-Cd(3)-N(2)#4	92.4(2)
N(1)-Cd(2)-C(28)	114.1(2)	O(5)-Cd(3)-N(2)#5	87.6(2)
N(1)-Cd(2)-C(43)	111.6(2)	O(5)#1-Cd(3)-N(2)#5	92.4(2)
O(23)-Cd(2)-O(8)	89.5(2)	O(5)#1-Cd(3)-N(2)#4	87.6(2)
O(23)-Cd(2)-O(9)	98.5(2)	O(3)#3-Cd(3)-O(3)#2	180.0(2)
O(23)-Cd(2)-O(7)	85.9(2)	N(2)#5-Cd(3)-O(3)#3	96.07(19)
O(23)-Cd(2)-O(10)	83.8(2)	N(2)#4-Cd(3)-O(3)#2	96.07(19)
O(23)-Cd(2)-C(28)	86.0(2)	N(2)#5-Cd(3)-O(3)#2	83.93(19)
O(23)-Cd(2)-C(43)	89.8(2)	N(2)#4-Cd(3)-O(3)#3	83.93(19)
O(10)-Cd(2)-O(8)	79.46(18)	N(2)#4-Cd(3)-N(2)#5	180.0
#1 3-X,3	3-Y,2-Z #2 +X	,1+Y,+Z #3 3-X,2-Y,2-Z	
#4 2+X,	+Y,+Z #5 1-X	,3-Y,2-Z #6+X,-1+Y,+Z	

Fig. S1. (a) The coordination environment of Cd(II) ion in NKM-102; (b) The coordination modes of the deprotonated TCPE⁴⁻ ligand.

Fig. S2. (a) The structure of NKM-102 viewed along *a* axis; (b) The structure of NKM-102 viewed along *b* axis.

Fig. S3. The framework topology of (4, 4, 5, 6)-connected network with point (Schläfli) symbol of $\{4^{4} \cdot 6^{10} \cdot 8\} \{4^{4} \cdot 6^{2}\}_{3} \{4^{4} \cdot 6^{6}\}_{2}$.

Fig. S4. TGA curve of NKM-102.

Fig. S5. The solid-state fluorescence spectra of H₄TCPE ligand and NKM-102.

Fig. S6. The CIE chromaticity diagram showing the color coordinates of NKM-102 and NKM-102 upon the addition of Al^{3+} ions in C_2H_5OH .

Fig. S7. Fitting plot of the detection limit Al^{3+} ions in C_2H_5OH solution for NKM-102.

Fig. S8. Time-dependent response of the emission of NKM-102 toward Al^{3+} ions in

C₂H₅OH solution.

Fig. S9. Recycle sensing performances of NKM-102 toward Al^{3+} ions in C_2H_5OH solution.

Fig. S10. The PXRD patterns of **NKM-102** after Al³⁺ ions removal and after five consecutive cycles of fluorescence sensing experiments.

Fig. S11. XPS spectra (a) and O 1s XPS spectra (b) for **NKM-102** (black line) and Al³⁺@**NKM-102** (derived from immersing **NKM-102** into Al³⁺ ions solution; red line).

Table S4. Comparison of literature reports for MOFs as sensors of Al^{3+} i	ons
--	-----

MOF	Detection Limit	Ref.
NKM-102	5.86 µМ (158 ppb)	this work
$Cd_2(syn-dftpmcp)(1,3-BDC)_2$	183 ppb	S3
UiO-66-NH ₂ -SA	6.98 μM (188 ppb)	S4
$\{[Zn_2(\mu_3-HCIP)_2(\mu-bpt)]\cdot 2H_2O\}_n$	760 ppb	S5
${[Co_3(phen)_2HL)_2] \cdot (H_2O)_2}_n$	960 ppb	S 6
$[H_3O]_2[Eu_{2.5}(BTB)_3(OAc)_{0.5}(H_2O)_3]$	100 μM (2.70*10 ³ ppb)	S7
$[Co_2(dmimpym)(nda)_2]_n$	1.89*10 ⁴ ppb	S 8
Tb-TCPP	7.79 nM (0.21 ppb)	S9
GUPT-2	0.269 μM (7.26 ppb)	S10
[CuI(BPDPE)] _n	2.1 μM (56.66 ppb)	S11
UiO-(OH)2@RhB	10 nM (0.27 ppb)	S12

References

S1. G. M. Sheldrick, Acta Cryst., 2014, C71, 3-8.

S2. A. L. Spek, J. Appl. Cryst., 2003, 36, 7-13.

S3. W. Li, J. Gu, H. Li, M. Dai, D. J. Young, H. Li and J. Lang, Inorg. Chem., 2018,

57, 13453-13460.

- S4. S. Zhu and B. Yan, *Dalton Trans.*, 2018, 47, 1674-1681.
- S5. M. Arici, New J. Chem., 2019, 43, 3690.
- S6. Y. Liu, C. Liu, X. Zhang, L. Liu, C. Ge, X. Zhuang, N. Zhang, Q. Yang, Y. Huang and Z. Zhang, J. Solid State Chem., 2019, 272, 1.
- S7. H. Xu, M. Fang, C. Cao, W. Qiao and B. Zhao, Inorg. Chem., 2016, 55, 4790.
- S8. W. Chen, X. Meng, G. Zhuang, Z. Wang, M. Kurmoo, Q. Zhao, X. Wang, B.
- Shan, C. Tung and D. Sun, J. Mater. Chem. A, 2017, 5, 13079.
- S9. C. Fu, X. Sun, G. Zhang, P. Shi and P. Cui, Inorg. Chem., 2021, 60, 1116-1123.
- S10. S. Wang, X. Zheng, S. Zhang, G. Li and Y. Xiao, *CrystEngComm*, 2021, 23, 4059-4068.
- S11. K. Wu, J. Hu, X. Cheng, J. Li and C. Zhou, *Journal of Luminescence*, 2020, 219, 116908.
- S12. X. Zheng, Y. Zhao, P. Jia, Q. Wang, Y. Liu, T. Bu, M. Zhang, F. Bai, and L. Wang, *Inorg. Chem.*, 2020, **59**, 18205-18213.