Electronic Supplementary Information

A new computational strategy to calculate the edge energy of a relaxed step. Calcite (CaCO₃) as a case study

Bruno M.,^{1,2,3}* Aquilano D.¹

- ¹ Dipartimento di Scienze della Terra, Università degli Studi di Torino, Via Valperga Caluso 35, Torino, 10125-Italy
- ² SpectraLab s.r.l., Spin-off accademico dell'Università degli Studi di Torino, Via G. Quarello 15/a, 10135, Torino (TO), Italy
- ³ NIS, Centre for Nanostructured Interfaces and Surfaces, Università degli Studi di Torino, Via G. Quarello 15/a, 10135, Torino (TO), Italy

Figure S1. Kossel's crystal is used to exemplify the construction of two steps of height $d_{10.4}$ on the top and bottom crystal surface of a slab of calcite for performing quantum-mechanical geometry optimizations. (a) Twelve-layers (10.4) slab is cut from the optimized bulk structure of calcite. (b) Steps delimited by two [uvw] edges parallel to cell parameter *b* are generated by deleting rows 1-4 and 10-13 in the layers 1 and 12. *S* and *L* are the width and length of the step, respectively. Top and bottom surfaces of the slab (with step) are be put in relation by either an inversion center or a mirror plane to cancel out the dipole moment and allowing quantum-mechanical calculations.

Figure S2. ΔX , ΔY and ΔZ as a function of X (fractional coordinates) and Z (cartesian coordinates, Å) for the $[4^21]_{Ca}$ step on (10.4) surface. In the left column, the grey area indicates the location of the step along X. In the right column, Z = 0 is the $d_{10.4}$ layer just below the step (i.e., layer 2) and $Z \sim -12$ Å is the last layer in region 1 (i.e., layer 6).

Figure S3. ΔX , ΔY and ΔZ as a function of X (fractional coordinates) and Z (cartesian coordinates, Å) for the $[4^21]_{CO3(A)}$ step on (10.4) surface. In the left column, the grey area indicates the location of the step along X. In the right column, Z = 0 is the $d_{10.4}$ layer just below the step (i.e., layer 2) and $Z \sim -12$ Å is the last layer in region 1 (i.e., layer 6).

Figure S4. ΔX , ΔY and ΔZ as a function of X (fractional coordinates) and Z (cartesian coordinates, Å) for the $[4^21]_{CO3(B)}$ step on (10.4) surface. In the left column, the grey area indicates the location of the step along X. In the right column, Z = 0 is the $d_{10.4}$ layer just below the step (i.e., layer 2) and $Z \sim -12$ Å is the last layer in region 1 (i.e., layer 6).

Figure S5. ΔX , ΔY and ΔZ as a function of X (fractional coordinates) and Z (cartesian coordinates, Å) for the $[010]_{Ca}$ step on (10.4) surface. In the left column, the grey area indicates the location of the step along Y. In the right column, Z = 0 is the $d_{10.4}$ layer just below the step (i.e., layer 2) and $Z \sim -12$ Å is the last layer in region 1 (i.e., layer 6).

Figure S6. ΔX , ΔY and ΔZ as a function of X (fractional coordinates) and Z (cartesian coordinates, Å) for the $[010]_{CO3}$ step on (10.4) surface. In the left column, the grey area indicates the location of the step along Y. In the right column, Z = 0 is the $d_{10.4}$ layer just below the step (i.e., layer 2) and $Z \sim -12$ Å is the last layer in region 1 (i.e., layer 6).