Supporting information

A series of luminescence Cu(I) complexes based on diphosphine ligand and diimine ligand tuning by counter anions: the weak intermolecular interactions, terahertz spectra and photoproperties

Zi-Xi Li,^{†a} Xiao-Nan Kuang,^{†a} Guo Wang,^a Ning Zhu,^a Zhen-Zhou Sun,^a Hong-Liang Han,^a Yu-Ping Yang,^b Zhong-Feng Li,^a Xiu-Lan Xin,^c Qiong-Hua Jin^{*a,d}, Zhi-Gang Ren^{*e}

^aDepartment of Chemistry, Capital Normal University, Beijing 100048, China. E-mail: <u>jinqh@cnu.edu.cn</u> ^bSchool of Science, Minzu University of China, Beijing 100081 China. ^cSchool of Light Industry, Beijing Technology and Business University, Beijing 100048, China. ^dState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese

Academy of Sciences, Fuzhou, Fujian 350002, China. ^eCollege of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China. E-mail: <u>renzhigang@suda.edu.cn</u>

†Zi-Xi Li and Xiao-Nan Kuang contributed equally to this work.

Electronic Supplementary Information (ESI) available: crystal structure information, spectra date and computation details. CCDC: 2103602, 1969929, 1969928, 2103705, 2103706.

Caption of Figure

Fig. S1 The IR spectra for complex 1.
Fig. S2 The IR spectra for complex 2.
Fig. S3 The IR spectra for complex 3.
Fig. S4 The IR spectra for complex 4.
Fig. S5 The IR spectra for complex 5.
Fig. S6 The ¹H NMR spectra for complex 1.
Fig. S7 The ¹H NMR spectra for complex 2.
Fig. S8 The ¹H NMR spectra for complex 3.
Fig. S9 The ¹H NMR spectra for complex 4.
Fig. S10 The ¹H NMR spectra for complex 5.
Fig. S11 The ³¹P NMR spectra for complex 1.
Fig. S12 The ³¹P NMR spectra for complex 3.
Fig. S13 The ³¹P NMR spectra for complex 4.
Fig. S14 The ³¹P NMR spectra for complex 3.

Fig. S16 The PXRD patterns for complex **1**: simulated from single crystal data (Black) and single phase polycrystalline sample (Red).

Fig. S17 The PXRD patterns for complex **2**: simulated from single crystal data (Black) and single phase polycrystalline sample (Red).

Fig. S18 The PXRD patterns for complex **3**: simulated from single crystal data (Black) and single phase polycrystalline sample (Red).

Fig. S19 The PXRD patterns for complex **4**: simulated from single crystal data (Black) and single phase polycrystalline sample (Red).

Fig. S20 The PXRD patterns for complex **5**: simulated from single crystal data (Black) and single phase polycrystalline sample (Red).

Fig. S21 The thermal stability curves for complexes 1-5.

Fig. S22 Coordination environment of Cu(I) in complexes **1** (a), **2** (b), **3** (c), **4**(d), **5**(e) thermal ellipsoid drawn with a probability of 30%. For clarity, all hydrogen atoms and solvent molecules have been omitted.

Fig. S23 Hydrogen bonds in **1** (C1-H1...O2, 2.49 Å; C11-H11...O1, 2.50 Å; C21-H21...O3, 2.34 Å; C37-H37A...O2, 2.47 Å; C47-H47...O3, 2.48 Å; C51-H51...O2, 2.44 Å; C52-H52...F3, 2.46 Å).

Fig. S24 Hydrogen bonds in **2** (C1-H1...F4, 2.55 Å; C9-H9...F3, 2.46 Å; C10-H10...F1, 2.41 Å; C25-H25A...F4, 2.50 Å; C26-H26B...F4, 2.37 Å; C29-H29...F3, 2.39 Å).

Fig. S25 Hydrogen bonds in 3 (C1-H1...O3, 2.36 Å; C30-H30A...O4, 2.44 Å).

Fig. S26 Hydrogen bonds in 4 (O1-H1A...I1, 2.82 Å; C1-H1...I1, 3.06 Å)

Fig. S27 Hydrogen bonds in 5 (O1-H1A...O2, 1.90 Å; O2-H2A...Br1, 2.48 Å; C1-H1...Br1, 2.86

Å; C12-H12...Br1, 2.85 Å; C38-H38...Br1, 2.86 Å; C51-H51...O1, 2.56 Å;).

Fig. S28 Terahertz time-domain spectroscopy (THz-TDS) of bdppmapy.

Fig. S29 Terahertz time-domain spectroscopy (THz-TDS) of Bphen.

Fig. S30 Terahertz time-domain spectroscopy (THz-TDS) of complexes 1-5.

Caption of Table

Table. S1 Selected bond lengths (Å) and angles (°) for complexes 1-5.

Table. S2 Intermolecular C-H... π interactions for complex 1.

Table. S3 Intermolecular C-H... π interactions for complex 2.

Table. S4 Intermolecular C-H... π interactions for complex **3**.

Table. S5 Intermolecular C-H... π interactions for complex 4.

Table. S6 Intermolecular C-H... π interactions for complex 5.

Table. S7 Intermolecular π ... π interactions for complex 2.

Table. S8 Intermolecular π ... π interactions for complex **3**.

Table. S9 Fluorescence data for ligands Bphen and bdppmapy.

 Table. S10 Energy, oscillator strength and major contribution of the calculated transitions for complex 3.

Fig. S4 The IR spectra for complex 4.

Fig. S5 The IR spectra for complex 5.

Fig. S6 The ¹H NMR spectra for complex 1.

Fig. S8 The ¹H NMR spectra for complex 3.

Fig. S9 The ¹H NMR spectra for complex 4.

Fig. S10 The 1 H NMR spectra for complex 5.

Fig. S11 The ³¹P NMR spectra for complex 1.

Fig. S12 The ³¹P NMR spectra for complex 2.

Fig. S13 The ³¹P NMR spectra for complex 3.

Fig. S14 The ³¹P NMR spectra for complex 4.

Fig. S16 The PXRD patterns for complex 1: simulated from single crystal data (Black) and single phase polycrystalline sample (Red).

Fig. S17 The PXRD patterns for complex 2: simulated from single crystal data (Black) and single phase polycrystalline sample (Red).

Fig. S18 The PXRD patterns for complex 3: simulated from single crystal data (Black) and single phase polycrystalline sample (Red).

Fig. S19 The PXRD patterns for complex 4: simulated from single crystal data (Black) and single phase polycrystalline sample (Red).

Fig. S20 The PXRD patterns for complex 5: simulated from single crystal data (Black) and single phase polycrystalline sample (Red).

TGA was used to verify the stability of complexes **1-5** and the number of solvent molecules in the complexes (Fig. S21). As shown in graph, all the complexes presented weight loss related to the decomposition of ligands bdppmapy and Bphen. The TGA curves of complexes **2**, **4** and **5** all showed weight loss connected with the solvent moleculars in their crystal structures (**2**: 99.16% at 165 °C, cacld: 99.13%; **4**: 97.00% at 273 °C, cacld: 96.94%; **5**: 93.81% at 260 °C, cacld: 93.79%).

Fig. S21 The thermal stability curves for complexes 1-5.

Fig. S22 Coordination environment of Cu(I) in complexes 1 (a), 2 (b), 3 (c), 4(d), 5(e) thermal ellipsoid drawn with a probability of 30%. For clarity, all hydrogen atoms and solvent molecules have been omitted.

Fig. S23 Hydrogen bonds in **1** (C1-H1...O2, 2.49 Å; C11-H11...O1, 2.50 Å; C21-H21...O3, 2.34 Å; C37-H37A...O2, 2.47 Å; C47-H47...O3, 2.48 Å; C51-H51...O2, 2.44 Å; C52-H52...F3, 2.46

Fig. S24 Hydrogen bonds in **2** (C1-H1...F4, 2.55 Å; C9-H9...F3, 2.46 Å; C10-H10...F1, 2.41 Å; C25-H25A...F4, 2.50 Å; C26-H26B...F4, 2.37 Å; C29-H29...F3, 2.39 Å).

Fig. S25 Hydrogen bonds in 3 (C1-H1...O3, 2.36 Å; C30-H30A...O4, 2.44 Å).

Fig. S26 Hydrogen bonds in 4 (O1-H1A...I1, 2.82 Å; C1-H1...I1, 3.06 Å).

Fig. S27 Hydrogen bonds in 5 (O1-H1A...O2, 1.90 Å; O2-H2A...Br1, 2.48 Å; C1-H1...Br1, 2.86 Å; C12-H12...Br1, 2.85 Å; C38-H38...Br1, 2.86 Å; C51-H51...O1, 2.56 Å;).

Fig. S28 Terahertz time-domain spectroscopy (THz-TDS) of bdppmapy.

Fig. S29 Terahertz time-domain spectroscopy (THz-TDS) of Bphen.

Fig. S30 Terahertz time-domain spectroscopy (THz-TDS) of complexes 1-5.

Complex 1			
Cu(1)-I(1)	2.6814(7)	N(1)-Cu(1)-I(1)	80.80(7)
Cu(1)-N(1)	2.0700(33)	N(1)-Cu(1)-P(1)	124.22(5)
Cu(1)-P(1)	2.2838(11)	N(1)-Cu(1)-P(2)	105.46(5)
Cu(1)-P(2)	2.2912(9)	I(1)-Cu(1)-P(1)	127.14(5)
		I(1)-Cu(1)-P(2)	111.74(5)
		P(1)-Cu(1)-P(2)	104.99(2)
Complex 2			
Cu(1)-N(1)	2.0647(18)	N(1)-Cu(1)-N(2)	80.745(66)
Cu(1)-N(2)	2.0574(17)	N(1)-Cu(1)-P(1)	108.245(53)
Cu(1)-P(1)	2.2580(7)	N(1)-Cu(1)-P(2)	116.361(49)
Cu(1)-P(2)	2.2244(6)	N(2)-Cu(1)-P(1)	116.290(53)
		N(2)-Cu(1)-P(2)	132.189(15)
		P(1)-Cu(1)-P(2)	100.759(24)
Complex 3			
Cu(1)-N(1)	2.048(3)	N(1)-Cu(1)-N(2)	80.78(10)
Cu(1)-N(2)	2.051(3)	N(1)-Cu(1)-P(1)	108.21(7)
Cu(1)-P(1)	2.2503(9)	N(1)-Cu(1)-P(2)	132.19(8)
Cu(1)-P(2)	2.2196(9)	N(2)-Cu(1)-P(1)	104.83(7)
		N(2)-Cu(1)-P(2)	121.45(8)
		P(1)-Cu(1)-P(2)	105.59(3)
Complex 4			
Cu(1)-N(1)	2.055(2)	N(1)-Cu(1)-N(2)	80.88(9)
Cu(1)-N(2)	2.047(2)	N(1)-Cu(1)-P(1)	118.14(7)
Cu(1)-P(1)	2.2525(8)	N(1)-Cu(1)-P(2)	105.78(7)
Cu(1)-P(2)	2.2109(8)	N(2)-Cu(1)-P(1)	135.23(7)
		N(2)-Cu(1)-P(2)	112.78(7)
		P(1)-Cu(1)-P(2)	100.86(3)
Complex 5			
Cu(1)-N(1)	2.066(5)	N(1)-Cu(1)-N(2)	80.84(19)
Cu(1)-N(2)	2.033(5)	N(1)-Cu(1)-P(1)	99.03(13)
Cu(1)-P(1)	2.2575(15)	N(1)-Cu(1)-P(2)	121.12(14)
Cu(1)-P(2)	2.2061(15)	N(2)-Cu(1)-P(1)	116.48(14)
		N(2)-Cu(1)-P(2)	129.55(14)
		P(1)-Cu(1)-P(2)	104.78(6)

Table. S1 Selected bond lengths (Å) and angles (°) for complexes 1-5.

Table. S2 Intermolecular C-H... π interactions for complex 1.

C-HCg(<i>i</i>)	HCg distance / Å	C-HCg angel/(°)	CCg distance / Å
C20-H20 \rightarrow Cg(3) ⁱ	2.91	116	3.414
Cg(3)=N1-C6-C7-C10-C	11-C12		

Symmetric codes: ⁱ 0.5-x, 2-y, 1-z

Table. S3 Intermolecular C-H... π interactions for complex **2**.

C-HCg(<i>i</i>)	HCg distance / Å	C-HCg angel/(°)	CCg distance / Å
C14-H14 \rightarrow Cg(4) ⁱ	2.84	117	3.37
C36-H36→Cg(12) ⁱⁱ	2.92	136	3.65
C56-H56C \rightarrow Cg(4) ⁱⁱⁱ	2.41	166	3.35

Cg(4)=N2-C6-C7-C8-C9-C10

Cg(12)=C50-C51-C52-C53-C54-C55

Symmetric codes: i 2-x, -y, 2-z; ii -0.5+x, 0.5-y, 0.5+z; iii x, y, z

Table. S4 Intermolecular C-H... π interactions for complex **3**.

C-HCg(<i>i</i>)	HCg distance / Å	C-HCg angel/(°)	CCg distance / Å
C17-H17 \rightarrow Cg(8) ⁱ	2.86	127	3.50
C18-H18→Cg(9) ⁱⁱ	2.85	171	3.77
C20-H20→Cg(3) ⁱⁱⁱ	2.77	118	3.30
C33-H33→Cg(10) ⁱⁱ	2.86	148	3.69

Cg(3) = N1-C1-C2-C3-C4-C5

Cg(8) = C19-C20-C21-C22-C23-C24

Cg(9) = C31-C32-C33-C34-C35-C36

Cg(10)=C37-C38-C39-C40-C41-C41

Symmetric codes: ⁱ x, 0.5-y, 0.5+z; ⁱⁱ 1-x, 1-y, -z; ⁱⁱⁱ 1-x, -y, -z

Table. S5 Intermolecular C-H... π interactions for complex 4.

C-HCg(<i>i</i>)	HCg distance / Å	C-HCg angel/(°)	CCg distance / Å
C8-H8→Cg(12) ⁱ	2.94	138	3.688
C20-H20 \rightarrow Cg(3) ⁱ	2.71	137	3.455
C33-H33→Cg(12) ⁱⁱ	2.89	133	3.584

Cg(3) = N1-C1-C2-C3-C4-C5

Cg(12) = C50-C51-C52-C53-C54-C55

Symmetric codes: i 1-x, 1-y, 1-z; ii -0.5+x, 1.5-y, 0.5+z

Table. S6 I	ntermolecular	C-Hπ	interaction	ns for	comple	x 5.
-------------	---------------	------	-------------	--------	--------	------

		1	-
C-HCg(<i>i</i>)	HCg distance / Å	C-HCg angel/(°)	CCg distance / Å
C23-H23→Cg(12) ⁱ	2.97	153	3.823
C28-H28→Cg(7) ⁱⁱ	2.76	149	3.584
C40-H40 \rightarrow Cg(7) ⁱⁱⁱ	3.00	154	3.854
C52-H52 \rightarrow Cg(9) ^{iv}	2.91	141	3.682

Cg(7) = C13-C14-C15-C16-C17-C18 Cg(9) = C25-C26-C27-C28-C29-C30 Cg(12) = C50-C51-C52-C53-C54-C55Symmetric codes: ⁱ 0.5-x, -0.5+y, 1.5-z; ⁱⁱ 1+x, y, z; ⁱⁱⁱ 0.5+x, 1.5-y, 0.5+z; ^{iv} -1+x, y, z

Table. S7 Intern	nolecular $\pi \dots \pi$ interactions for c	omplex 2.
CgCg(i)	CgCg distance / Å	Alpha
Cg(10)Cg(10) ⁱ	3.89	0
Cg(10) = C38-C39-C40-C41-C42-C	43	
Symmetric codes: ⁱ 2-x, 1-y, 2-z		
Table. S8 Intern	nolecular $\pi\pi$ interactions for c	omplex 3 .
CgCg(i)	CgCg distance / Å	Alpha
Cg(5)Cg(5) ⁱ	3.81	0
Cg(5) = N4-C25-C26-C27-C28-C29		
Symmetric codes: ⁱ 2-x, 1-y, -z		

Table. S9 Fluorescence data for ligands Bphen and bdppmapy.

ligands	λ_{ex}/nm	λ_{em} / nm
Bphen	365	405
bdppmapy	380	433

Table. S10 Energy	, oscillator strength	and major	contribution of	of the calcula	ted transitions for
-------------------	-----------------------	-----------	-----------------	----------------	---------------------

complex 3.

		1		
Excited state	Energy	Oscillator strength	Contribution %	
3 absorption	2.6213 eV 472.98 nm	0.1760	HOMO-2→LUMO	3.62
			HOMO→LUMO	92.89
3 absorption	3.9137 eV 316.80 nm	0.2378	HOMO-12→LUMO+1	2.17
			HOMO-5→LUMO+1	67.30
			HOMO-4→LUMO	13.92
			HOMO→LUMO+3	3.20
3 absorption	4.7432 eV 261.39 nm	0.1500	HOMO-20→LUMO	6.63
			HOMO-19→LUMO+1	3.24
			HOMO-18→LUMO+1	3.83
			HOMO-5→LUMO+2	5.00
			HOMO-4→LUMO+5	3.15
			HOMO-3→LUMO+3	8.78
			HOMO-2→LUMO+4	3.29
			HOMO-2→LUMO+5	8.50
			HOMO-2→LUMO+6	31.29
			HOMO-1→LUMO+10	2.60
3 emission	2.7022 eV 458.83 nm	0.1496	LUMO→HOMO-2	87.16