Electronic Supplementary Materials (ESI)

Rare earth molecular ferroelectrics with piezoelectric response

Tingting Ying, Yuhui Tan*, Yunzhi Tang*, Xiao Long, Ning Song, Yukong

Li and Zhen Sun

* Faculty of materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China

Fig. S1 Infrared spectrum of compound 1.

Fig. S2 The powder XRD of 1 with the simulated one in red and the measurement in blue.

Fig. S4. The asymmetric structure of 1-LTP

Fig. S6. The structural refinement results of PXRD data for 1 in 350 K.

Table S1 Crystal data and structure refinement for 1				
	Compound	1		
	Empirical formula	C50H108CeN0O12S2		

Compound	1
Empirical formula	$C_{50}H_{108}CeN_9O_{12}S_2$
Formula weight	1231.69
Temperature/K	293
Crystal system	monoclinic
Space group	Cc
a/Å	16.1541(2)

b/Å	18.0486(2)
c/Å	23.7037(3)
α/°	90
β/°	91.1550(10)
γ/°	90
Volume/Å ³	6909.62(14)
Z	4
$\rho_{calc}g/cm^3$	1.184
μ/mm ⁻¹	0.774
F(000)	2628.0
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0363, wR_2 = 0.0981$
Final R indexes [all data]	$R_1 = 0.0390, wR_2 = 0.0994$

Calculation of ΔS and N

Compound 1:

In the heating cycle mode

$$\Delta S_{\rm H} = R \ln N_{\rm I}$$

$$\Delta S_{\rm H} = \int_{T_2}^{T_1} \frac{Q}{T} dT$$

$$\approx \frac{\Delta H}{T_c}$$

$$= \frac{11.62 J^{-1} moI \times 1231.7 g^{-1} moI}{408 K}$$

$$= 35.32 J \cdot mol^{-1} \cdot K^{-1}$$

$$N_I = \exp(\frac{\Delta S_{\rm H}}{R}) = \exp(\frac{35.32 J \cdot moI^{-1} \cdot K^{-1}}{8.314 J \cdot moI^{-1} \cdot K^{-1}})$$

$$= 54.00$$

In the cooling cycle mode

$$\Delta S_{\rm c} = R \ln N_2$$
$$\Delta S_{\rm c} = \int_{T_2}^{T_1} \frac{Q}{T} dT$$

$$\approx \frac{\Delta H}{Tc}$$
$$= \frac{7.9 J^{-1} mol \times 1231.7 g^{-1} mol}{376 K}$$

$$=25.97 J \cdot mol^{-1} \cdot K^{-1}$$

$$N_2 = \exp(\frac{\Delta S_c}{R}) = \exp(\frac{25.97J \cdot mol^{-1} \cdot K^{-1}}{8.314J \cdot mol^{-1} \cdot K^{-1}})$$

$$=24.00$$