Electronic Supplementary Information (ESI)

Stable hydrogen-bonded organic frameworks for selective fluorescence detection of Al³⁺ and Fe³⁺ ions

Cheng-Quan Xiao, Wen-Hai Yi, Jun-Jie Hu, Sui-Jun Liu* and He-Rui Wen*

School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.

E-mail: sjliu@jxust.edu.cn (S.-J. Liu), wenherui63@163.com (H.-R. Wen); Tel: +86-797-8312289, +86-797-8312204

D-H···A	Distance of D…A(Å)	Angle of D-H···A(°)
HOF 1		
O3–H3…N1	1.821	164.223
O1A–H1A…O5C	2.460	124.843
O7−H7…N2B	1.785	174.308
O4–H4···O1A	2.073	162.871
O6D–H9D…O2	1.835	156.867
HOF 2		
O4−H4···N1	1.784	172.250
O10–H10····O3	1.958	163.256
O6A–H6A…O9	1.925	158.795
O2−H2…O10B	2.036	161.123
O7–H7····N2C	1.833	166.666
HOF 3		
$O4-H4\cdots N2$	1 706	173 196
$O6-H6\cdots N1$	1.822	163 604
03–H3…08A	1 747	151 491
01–H1…05B	2.082	151.168
HOF 4		
O3–H3A…N1A	1.638	162.814
O7–H7…N3B	1.610	175.016
O1–H8…O2C	2.611	139.389
O2C-H2C····O9D	1.992	163.202
O5–H6…O6E	1.679	177.431

Table S1. Hydrogen-bonding lengths (Å) and angles (°) for HOFs 1-4

Symmetry codes for HOF **1**: A: -x, 1-y, -z, B: x-2, 0.5-y, z-0.5, C: x, 0.5-y, z-0.5, D: 1-x, -y, 1-z. HOF **2**: A 2-x, -y, 2-z, B: -x, 1-y, 1-z, C: 2+x, 0.5-y, 0.5+z. HOF **3**: A: 1-x, -y, 2-z, B: 1-x, 1-y, 1-z. HOF **4**: A: x+1, y, z, B: x-1, y, z, C: x+0.5, 0.5+y, z-0.5, D: -x. 1-y, 1-z, E: -x, -y,-z.

Fig. S1. The N₂ sorption isotherms for 1-4 at 77 K.

Fig. S2. IR spectra of 1–4.

Fig. S3. DSC curves of 1–4 within 200 °C.

Fig. S4. TGA curves of 1–4 in the range of 25-950 $^{\circ}$ C under N₂ atmosphere.

Fig. S5. 3D structure of HOFs 1–4 along the *a*-axis.

Fig. S6. Fluorescence spectra of TCPE and 1-4 at room temperature (excitation wavelength: 398 nm).

Fig. S7 (a) The influence of interfering ions on the luminescence intensity of Fe³⁺ at room temperature; (b) the influence of Fe³⁺ with different concentration at room temperature on the liquid emission spectrum of **3**; (c) Time-dependent emission spectra of the suspension after adding Fe³⁺ (0.2 M) at room temperature ($\lambda_{ex} = 396$ nm).

Fig. S8 (a) The influence of interfering ions on the luminescence intensity of Fe³⁺ at room temperature; (b) the influence of Fe³⁺ with different concentration at room temperature on the liquid emission spectrum of 4; (c) Time-dependent emission spectra of the suspension after adding Fe³⁺ (0.2 M) at room temperature ($\lambda_{ex} = 376$ nm).

Fig. S9. Correlation between the luminescence of 3 and the concentration of Fe^{3+} (a) and Al^{3+} (b).

Fig. S10. (a) Correlation between the luminescence of **4** and the concentration of Fe^{3+} . (b) The photoluminescence intensities correlation between the luminescence of **4** and the concentration of Al^{3+} . (c) The fluorescence maximum peak wavelengths correlation between the luminescence of **4** and the concentration of Al^{3+} .

Fig. S11. Relative luminescent intensity of **3** after five runs of recycling experiments for (a) Fe^{3+} , and the red-shift emssion of **3** after five runs of recycling experiments for (b) Al^{3+} .

Fig. S12. Relative luminescent intensity of **4** after five runs of recycling experiments for (a) Fe^{3+} , and (b) Al^{3+} .

Fig. S13. (a) Liquid emission spectra of **3** upon the addition of different concentrations of Al^{3+} at room temperature; (b) Time-dependent emission spectra of the suspension after adding Al^{3+} (0.2 M) at room temperature ($\lambda_{ex} = 396$ nm).

Fig. S14. (a) Liquid emission spectra of 4 upon addition of different concentrations of Al^{3+} at room temperature ($\lambda_{ex} = 376$ nm); (b) Time-dependent emission spectra of the suspension after adding Al^{3+} (0.2 M) at room temperature ($\lambda_{ex} = 376$ nm).

Fig. S15.The luminescence decay of HOFs 1(a), 2(b), 3(c) and 4(d), respectively ($\lambda_{ex} = 398 \text{ nm}$, $\lambda_{em} = 456 \text{ nm}$ for 1, $\lambda_{ex} = 398 \text{ nm}$, $\lambda_{em} = 488 \text{ nm}$ for 2, $\lambda_{ex} = 398 \text{ nm}$, $\lambda_{em} = 466 \text{ nm}$ for 3 and $\lambda_{ex} = 398 \text{ nm}$, $\lambda_{em} = 472 \text{ nm}$ for 4).

Fig. S16. UV-vis adsorption spectra of **3** unpon the addition of different $M(NO_3)_x$ and the excitation spectrum of **3** (a), and UV-vis adsorption spectra of **4** unpon the addition of different $M(NO_3)_x$ and the excitation spectrum of **4** (b).