Supporting Information

$\mathrm{VO}_{2}(\mathrm{~B}) @$ Carbon Fiber Sheet as a Binder-free Flexible Cathode for Aqueous Zn -Ion Batteries

Xiaofan Li ${ }^{a, b}$, Linyu Yang ${ }^{a, b^{*}}$, Hongyu Mi ${ }^{c}$, Huizhong Li ${ }^{d}$, Min Zhang ${ }^{a, b}$, Ablat Abliz,
${ }^{a, b}$ Fengjun Zhao ${ }^{d}$, Shuying Wang ${ }^{a, b^{*}}$, Haibing Li ${ }^{e}$
a Xinjiang Key Laboratory of Solid State Physics and Devices, Xinjiang University, Urumqi 830046, PR China. E-mail: yanglinyu0222@sina.com; wsysmilerr@sina.com.
${ }^{\mathrm{b}}$ School of physics and technology, Xin Jiang University, Urumqi, Xinjiang 830046, China.
${ }^{c}$ School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China.
${ }^{\text {d }}$ School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China.
${ }^{\mathrm{e}}$ Xinjiang Uygur Autonomous Region Research Institute of Measurement and Testing, Urumqi 830011, China

Fig. S1 The SEM image of pure $\mathrm{VO}_{2}(B)$ at magnification of 20,000 times.

Fig. S2 Electrochemical characterization:(a)CV curves of pure $\mathrm{VO}_{2}(\mathrm{~B})$ cathode at a voltage range of $0.2-1.2 \mathrm{~V}\left[\mathrm{ZnSO}_{4}\right]$. (b) CV curves of $\mathrm{VO}_{2}(\mathrm{~B}) @ C F S$ cathode at a voltage range of $0.2-1.2 \mathrm{~V}$ [Zn $\left.\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}\right]$.(c) CV curves of pure $\mathrm{VO}_{2}(\mathrm{~B})$ cathode at a voltage range of $0.2-1.2 \mathrm{~V}\left[\mathrm{Zn}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}\right]$.

Fig. S3 VO_{2} (B)@CFS Flexible cathode electrode: (a) After being folded 30 times; (B) After being twisted 50 times; (c) Powder falling on A4 paper after 80 folds and twists.

Fig. S4 SEM image (a) and (b) of VO2(B)@CFS electrode after 50 cycles at $0.5 \mathrm{Ag}^{\mathbf{- 1}}$.

Fig. S5 Electrochemical impedance spectra of the soft-packeged $\mathrm{Zn} / \mathrm{VO}_{2}(\mathrm{~B}) @ C F S$ battery at various bending states from 0.01 Hz to 100 kHz .

Fig. S6 Soft-pack $\mathrm{Zn} / \mathrm{VO}_{2} @ \mathrm{CFS}\left[\mathrm{ZnSO}_{4}\right]$ battery powers LED lights brightness at 10 to 150 h .

Fig. S7 (a) Zn $2 p$ XPS spectra at different charge/discharge voltages; ($b-d$) $V 2 p$ XPS spectra at initial, discharge and charge voltages.

Fig. S8 Comparison of EIS(electrochemical impedance spectroscopy) between CFS@VO ${ }_{2}(B)$ and pure $\mathrm{VO}_{2}(\mathrm{~B})\left[\mathrm{ZnSO}_{4}\right]$.

