The construction of a multifunctional luminescent Eu-MOF for the

sensing of Fe^{3+} , $Cr_2O_7^{2-}$ and amines in aqueous solution

Cui-Li Wang, Ya-Xin Zheng, Le Chen, Cai-Yong Zhu, Wei Gao^{*}, Peng Li, Jie-Ping Liu and Xiu-Mei Zhang^{*}

MOF	1-Eu
Eu1-O6A	2.300(3)
Eu1-O6B	2.300(3)
Eu1-O1C	2.310(3)
Eu1-O1	2.310(3)
Eu1-O9B	2.503(3)
Eu1-O9A	2.503(3)
Eu1-O10A	2.522(3)
Eu1-O10B	2.522(3)
Eu2-O7	2.369(3)
Eu2-O7D	2.369(3)
Eu2-O4D	2.546(3)
Eu2-O4	2.546(3)
Eu2-O12E	2.546(3)
Eu2-O12F	2.546(3)
Eu2-O3	2.555(3)
Eu2-O3D	2.555(3)
Eu2-O11E	2.607(3)
Eu2-O11F	2.607(3)
O6A-Eu1-O6B	96.58(16)
O6A-Eu1-O1C	156.09(12)
O6B-Eu1-O1C	93.73(11)
O6A-Eu1-O1	93.73(11)
O6B-Eu1-O1	156.09(12)
O1C-Eu1-O1	85.24(16)
O6A-Eu1-O9B	72.32(10)

Table S1 Selected bond lengths (Å) and angles (°) for 1-Eu.

O6B-Eu1-O9B	77.90(11)
O1C-Eu1-O9B	131.15(11)
O1-Eu1-O9B	84.82(12)
06A-Eu1-09A	75.86(12)
06B-Eu1-09A	123.98(11)
01C-Eu1-O9A	131.15(11)
O1-Eu1-O9A	84.82(12)
O9B-Eu1-O9A	134.62(15)
06A-Eu1-O10A	75.86(12)
O6B-Eu1-O10A	123.98(11)
O1C-Eu1-O10A	79.48(11)
O1-Eu1-O10A	80.47(12)
O9B-Eu1-O10A	143.33(10)
O9A-Eu1-O10A	51.71(9)
O6A-Eu1-O10B	123.98(10)
O6B-Eu1-O10B	75.86(12)
O1C-Eu1-O10B	80.47(12)
O1-Eu1-O10B	80.47(12)
O9B-Eu1-O10B	51.71(9)
O9A-Eu1-O10B	143.33(10)
O10A-Eu1-O10B	152.64(14)
O7-Eu2-O7D	139.89(17)
O7-Eu2-O4D	143.17(10)
O7D-Eu2-O4D	69.60(11)
O7-Eu2-O4	69.60(11)
O7D-Eu2-O4	143.17(10)
O4D-Eu2-O4	97.57(14)
O7-Eu2-O12E	88.36(12)
O7D-Eu2-O12E	87.70(12)
O4D-Eu2-O12E	119.87(11)
O4-Eu2-O12E	68.54(10)
O7-Eu2-O12F	87.70(12)
O7D-Eu2-O12E	88.36(12)
O4D-Eu2-O12F	68.54(10)

O4-Eu2-O12F	119.87(11)	
O12E-Eu2-O12F	168.49(14)	
O7-Eu2-O3	71.64(11)	
O7D-Eu2-O3	142.14(11)	
O4D-Eu2-O3	73.74(9)	
O4-Eu2-O3	50.81(9)	
O12E-Eu2-O3	119.33(11)	
O12F-Eu2-O3	69.44(11)	
O7-Eu2-O3D	142.14(10)	
O7D-Eu2-O3D	71.64(11)	
O4D-Eu2-O3D	50.81(9)	
O4-Eu2-O3D	73.74(9)	
O12E-Eu2-O3D	69.44(11)	
O12F-Eu2-O3D	119.33(11)	
O3-Eu2-O3D	92.43(16)	
O7-Eu2-O11E	78.00(12)	
O7D-Eu2-O11E	69.17(12)	
O4D-Eu2-O11E	137.78(11)	
O4-Eu2-O11E	110.02(10)	
O12E-Eu2-O11E	49.88(10)	
O12F-Eu2-O11E	118.66(10)	
O3-Eu2-O11E	148.36(11)	
O3D-Eu2-O11E	106.62(10)	
O7-Eu2-O11F	69.17(12)	
O7D-Eu2-O11F	78.00(12)	
O4D-Eu2-O11F	110.02(10)	
O4-Eu2-O11F	137.78(11)	
O12E-Eu2-O11F	118.66(10)	
O12F-Eu2-O11F	49.88(10)	
O3-Eu2-O11F	106.62(10)	
O3D-Eu2-O11F	148.36(11)	
O11E-Eu2-O11F	69.47(13)	
Symmetry codes: A -x+1/2, -y+2, z+1; B x, y, z+1; C -x+1/2, -y+2, z;		
D x, -y+5/2, -z+3/2; E -x+1, y+1/2, z+1/2; F -x+1, -y+2, -z+1		

Fig. S1 PXRD data as well as the simulated ones for 1-Eu.

Fig. S2 TGA plots of 1-Eu under air atmosphere

Fig. S3 Emission decay curves of 1-Eu.

Fig. S4 Quenching efficiency of 1-Eu dispersed in H_2O with the addition of Fe³⁺ solution.

Fig. S5 Repeatability of the quenching ability of 1-Eu in H₂O and in the presence of Fe³⁺ (1 mM) (λ_{ex} = 322 nm).

Fig. S6 PXRD patterns of 1-Eu after soaking in Fe³⁺ solutions.

Fig. S7 UV-Vis adsorption spectrum of 1-Eu@cations aqueous solution with the same concentration of 1×10^{-4} mol·L⁻¹ and the excitation spectrum of 1-Eu.

Fig. S8 Comparison of the XPS spectra of 1-Eu before and after treatment with Fe^{3+} ions: overall spectra (left) and O 1s (right).

Fig. S9 Quenching efficiency of 1-Eu dispersed in H_2O with the addition of $Cr_2O_7^{2-}$ solution.

Fig. S10 Repeatability of the quenching ability of 1-Eu in H₂O and in the presence of $Cr_2O_7^{2-}$ (1 mM) ($\lambda_{ex} = 322$ nm).

Fig. S11 PXRD patterns of 1-Eu after soaking in $Cr_2O_7^{2-}$ solutions.

Fig. S12 UV-Vis adsorption spectrum of 1-Eu@anions aqueous solution with the same concentration of 1×10^{-4} mol·L⁻¹ and the excitation spectrum of 1-Eu.

Fig. S13 (a) Emission spectra of 1-Eu by the gradual addition of EA aqueous solution;(b) The Stern-Volmer plot of 1-Eu for EA.

Fig. S14 (a) Emission spectra of 1-Eu by the gradual addition of DMA aqueous

solution; (b) The Stern-Volmer plot of 1-Eu for DMA.

Fig. S15 (a) Emission spectra of **1-Eu** by the gradual addition of 4-Hydroxyaniline aqueous solution; (b) The Stern-Volmer plot of **1-Eu** for 4-Hydroxyaniline.

Fig. S16 (a) Emission spectra of **1-Eu** by the gradual addition of 4-Toluidine aqueous solution; (b) The Stern-Volmer plot of **1-Eu** for 4-Toluidine.

Fig. S17 Repeatability of the quenching ability of 1-Eu in H₂O and in the presence of

EN (1 mM) and Aniline (1 mM) ($\lambda_{ex} = 322$ nm).

Fig. S18 Repeatability of the quenching ability of 1-Eu in H₂O and in the presence of EA (1 mM) ($\lambda_{ex} = 322$ nm).

Fig. S19 Repeatability of the quenching ability of 1-Eu in H₂O and in the presence of DMA (1 mM) ($\lambda_{ex} = 322$ nm).

Fig. S20 Repeatability of the quenching ability of 1-Eu in H₂O and in the presence of

4-Hydroxyaniline (1 mM) (1 mM) ($\lambda_{ex} = 322$ nm).

Fig. S21 Repeatability of the quenching ability of **1-Eu** in H₂O and in the presence of 4-Toluidine (1 mM) ($\lambda_{ex} = 322$ nm).

Fig. S22 PXRD patterns of **1-Eu** after soaking in EN, EA, DMA, Aniline, 4-Hydroxyaniline and 4-Toluidine solutions.

Fig. 23 UV-Vis adsorption spectrum of 1-Eu@amines aqueous solution with the same concentration of 1×10^{-4} mol·L⁻¹ and the excitation spectrum of 1-Eu.