A series of polyoxometalate-based hybrid complexes

constructed by a tripodal ligand containing mixed N/O

donors

Jun Ying, Liang Jin, Hai-Yan Yu, Ai-Xiang Tian*, Xiu-Li Wang*

1 able 51. 5	elected bond distance	Complex 1	nexes 1–0.	
Cd(1)-N(4)	2.139(5)	Cd(1)-N(5)	2.133(5)	
N(5)-Cd(1)-N(4)	178.9(2)		(-)	
Symmetry codes: ¹ 1–X 1	-Y 1-Z: ² -X 1-Y 1-	Z· ³ 1–X –Y 1–Z		
	1,1 2, 11,1 1,1	Complex 2		
Co(1)–N(1) ³	2.124(4)	Co(1)-O(3)	2.047(4)	
$Co(1) - O(6)^2$	2.100(4)	Co(1)–O(4)	2.075(4)	
Co(1)–O(5)	2.056(4)	Co(1)-O(1)	2.143(4)	
O(3)–Co(1)–O(4)	93.08(17)	O(5)–Co(1)–O(4)	89.61(16)	
O(3)–Co(1)–O(1)	87.13(16)	O(5)–Co(1)–O(1)	84.68(15)	
O(3)–Co(1)–N(1) ³	102.59(17)	O(5)–Co(1)–N(1) ³	85.58(16)	
$O(4)-Co(1)-O(6)^2$	178.23(17)	O(3)–Co(1)–O(6) ²	87.64(16)	
O(4)–Co(1)–O(1)	92.17(18)	O(3)–Co(1)–O(5)	171.47(16)	
$O(4)-Co(1)-N(1)^3$	88.13(18)	C(3)–N(1)–Co(1) ⁴	114.2(4)	
$N(1)^3$ -Co(1)-O(1)	170.25(17)	O(5)–Co(1)–O(6) ²	89.91(15)	
Mo(4)–O(5)–Co(1)	145.9(2)	C(1)–N(1)–Co(1) ⁴	132.6(4)	
$O(6)^2 - Co(1) - N(1)^3$	90.14(17)	O(6) ² –Co(1)–O(1)	89.48(16)	
Symmetry codes: ¹ 1-X,1	-Y,2-Z; ² 2-X,1-Y,1-Z	Z; ³ +X,1+Y,+Z		
		Complex 3		
Cu(05)–O(17)	2.072(5)	$Cu(05)-O(2)^2$	2.178(4)	
Cu(05)–N(2)	2.097(6)	Cu(05)–O(3)	2.043(4)	
Cu(05)–O(4)	2.110(4)	$Cu(05) - O(5)^3$	2.140(4)	
$Mo(1)-O(5)-Cu(05)^3$	171.7(3)	O(3)–Cu(05)–O(4)	168.70(18)	
$O(4)-Cu(05)-O(2)^2$	82.26(17)	$O(3)-Cu(05)-O(5)^3$	87.42(18)	
$O(5)^{3}$ - $Cu(05)$ - $O(2)^{2}$	87.22(18)	$O(3)-Cu(05)-O(2)^2$	86.99(18)	
Mo(1)–O(4)–Cu(05)	146.4(3)	O(3)–Cu(05)–O(17)	95.04(19)	
$N(2)-Cu(05)-O(2)^2$	167.95(19)	O(3)–Cu(05)–N(2)	104.8(2)	
C(5)–N(2)–Cu(05)	115.2(5)	O(17)–Cu(05)–O(4)	88.77(19)	
$C(1)-O(2)-Cu(05)^4$	134.9(4)	O(17)–Cu(05)–O(5) ³	177.25(19)	
C(6)–N(2)–Cu(05)	133.5(5)	$O(17)-Cu(05)-O(2)^2$	91.7(2)	

Table S1. Selected bond distances (Å) and angles (°) for complexes 1–6.

$O(4) - Cu(05) - O(5)^3$	88.59(18)	O(17)-Cu(05)-N(2)	89.9(2)
$N(2)-Cu(05)-O(5)^3$	90.6(2)	N(2)-Cu(05)-O(4)	85.84(19)
Symmetry codes: ¹ 1-X,-Y	Y,2-Z; ² +X,-1+Y,+Z;	³ 2-X,-Y,1-Z	
		Complex 4	
Fe(1)–O(3)	2.060(7)	$N(4) - Fe(1)^4$	2.127(9)
Fe(1)–O(2)	2.148(8)	$O(4) - Fe(1)^2$	2.097(7)
Fe(1)–O(5)	2.064(7)	$Fe(1)-O(4)^2$	2.097(7)
Fe(1)–O(6)	2.084(8)	$Mo(1)-O(4)-Fe(1)^2$	174.9(4)
O(3)–Fe(1)–O(2)	84.6(3)	$O(3)$ -Fe(1)- $O(4)^2$	90.6(3)
O(3)–Fe(1)–O(5)	171.2(3)	O(3)-Fe(1)-N(4) ³	85.5(3)
O(3)–Fe(1)–O(6)	89.1(3)	O(5)–Fe(1)–O(2)	86.9(3)
O(5)–Fe(1)–O(6)	93.1(3)	$O(4)^2 - Fe(1) - N(4)^3$	90.4(3)
$O(5) - Fe(1) - O(4)^2$	87.3(3)	N(4) ³ –Fe(1)–O(2)	170.1(3)
$C(13)-N(4)-Fe(1)^4$	115.4(7)	O(5)-Fe(1)-N(4) ³	103.0(3)
C(13)–N(4)–C(12)	103.9(9)	O(6)–Fe(1)–O(2)	91.4(3)
$C(12)-N(4)-Fe(1)^4$	134.0(8)	$O(6) - Fe(1) - O(4)^2$	178.7(3)
Mo(1)–O(3)–Fe(1)	145.4(4)	O(6)-Fe(1)-N(4) ³	88.3(4)
C(1)–O(2)–Fe(1)	132.8(7)	$O(4)^2 - Fe(1) - O(2)$	89.9(3)
Symmetry codes: ¹ 1–X,1	-Y,1-Z; ² -X,1-Y,1-	Z; ³ 1–X,–Y,1–Z	
	C	Complex 5	
Ni(1)–O(13)	2.0256(18)	$Ni(1) - O(12)^3$	2.0716(19)
$Ni(1) - O(16)^2$	2.1015(19)	Ni(1)–O(14)	2.047(2)
Ni(1)–N(4)	2.085(2)	Ni(1)–O(15)	2.0311(19)
O(13)–Ni(1)–O(15)	172.72(8)	O(14)–Ni(1)–N(4)	88.00(10)
O(13)–Ni(1)–N(4)	85.89(8)	O(15)–Ni(1)–O(16) ²	86.71(8)
$O(12)^3 - Ni(1) - O(16)^2$	89.67(8)	O(15)–Ni(1)–O(12) ³	87.25(8)
O(12) ³ –Ni(1)–N(4)	90.53(9)	O(15)-Ni(1)-O(14)	93.17(9)
O(14)–Ni(1)–O(16) ²	91.77(9)	O(15)–Ni(1)–N(4)	101.01(9)
$O(14) - Ni(1) - O(12)^3$	178.52(9)	N(4)-Ni(1)-O(16) ²	172.27(8)
C(7)–O(16)–Ni(1) ⁴	131.73(17)	Mo(4)–O(13)–Ni(1)	144.90(11)
$Mo(4)-O(12)-Ni(1)^3$	173.51(12)	O(13)-Ni(1)-O(16) ²	86.38(7)
C(13)–N(4)–Ni(1)	133.1(2)	O(13)–Ni(1)–O(12) ³	90.40(8)
C(11)–N(4)–Ni(1)	114.61(19)	O(13)-Ni(1)-O(14)	89.36(8)
Symmetry codes: ¹ 1-X,2	-Y,-Z; ² +X,1+Y,+Z; ³	³ -X,2-Y,1-Z	
		Complex 6	
Zn(1)–O(13)	2.093(2)	Zn(1)–O(16) ²	2.166(2)
$Zn(1)-O(12)^3$	2.156(2)	Zn(1)–O(15)	2.043(2)
Zn(1)–N(1)	2.098(3)	Zn(1)–O(14)	2.081(3)
$O(12)^3 - Zn(1) - O(16)^2$	87.17(10)	$O(14)$ -Zn(1)- $O(16)^2$	92.44(11)
			-

O(15)–Zn(1)–O(13)	169.21(10)	O(14)–Zn(1)–N(1)	89.55(12)		
$O(15)-Zn(1)-O(12)^3$	87.35(10)	$N(1)-Zn(1)-O(12)^3$	90.44(11)		
$O(15) - Zn(1) - O(16)^2$	86.77(10)	N(1)–Zn(1)–O(16) ²	168.54(10)		
O(15)–Zn(1)–O(14)	94.69(11)	Mo(01)–O(13)–Zn(1)	146.38(14)		
O(15)–Zn(1)–N(1)	104.32(11)	$Mo(01)-O(12)-Zn(1)^3$	172.34(15)		
O(14)–Zn(1)–O(13)	89.20(10)	C(8)–O(16)–Zn(1) ⁴	133.9(2)		
$O(14)-Zn(1)-O(12)^3$	177.90(10)	$O(13)$ -Zn(1)- $O(12)^3$	88.71(9)		
$O(13) - Zn(1) - O(16)^2$	83.00(9)	C(1)–N(1)–Zn(1)	115.0(2)		
O(13)–Zn(1)–N(1)	85.74(10)	C(2)–N(1)–Zn(1)	132.6(2)		
Symmetry codes: ¹ 1-X,2-Y,-Z; ² +X,1+Y,+Z; ³ -X,2-Y,1-Z					

Complex	1	2-6
TMs	CdT	
Ligand		
Polyanions		

Table S2. The coordination modes of TMs, ligands and polyanions in complexes 1–6.

Fig. S1. View of the 2D supramolecular structure of complex 1.

Fig. S2. The PXRD patterns of complexes 1–6.

Fig. S3. The IR spectra of complexes 1–6.

					_		
	v(Mo–O _a)	v(Mo–O _d)	v(Mo–O _{b/c} –Mo)	v(Mo–O _b)	v(Mo–O _t)	v(P–O)	Ligand
1	-	959	876, 799	_	-	1057	1192–1736
2	823	_	_	934	669	_	1192–1736
3	893	_	_	941	663	_	1192–1736
4	802	_	_	949	669	_	1192–1736
5	900	_	_	956	641	_	1192–1736

Table S3. The IR Spectra data of complexes 1–6.

Fig. S4. The Diffuse reflection spectra of complexes 1–6.

Table S4. Experimental data for detecting Cr(VI), Fe(III), and H ₂ O ₂ using 1-, 2	2—
CPEs as amperometric sensors.	

СРЕ	substance	Response time	Concentration range	Sensitivity	Correlation coefficient	Detection limit
1	Cr(VI)	2.1s	4×10 ⁻³ −9.2×10 ⁻² mM	2.53366 µА mM ⁻¹	0.99687	5.3×10 ⁻⁴ M
2	Cr(VI)	1.8s	4×10 ⁻³ –9.2×10 ⁻² mM	45.1197 μA mM ⁻¹	0.99957	2.3×10 ⁻³ M
1	Fe(III)	2.2s	4×10 ⁻³ –9.2×10 ⁻² mM	8.10058 μA mM ⁻¹	0.99633	2.3×10 ⁻⁴ M
2	Fe(III)	2.3s	4×10 ⁻³ −9.2×10 ⁻² mM	74.1925 μA mM ⁻¹	0.99980	1.2×10 ⁻³ M
1	H ₂ O ₂	2.7s	4×10 ⁻³ −9.2×10 ⁻² mM	8.06275 μA mM ⁻¹	0.99868	1.0×10 ⁻³ M
2	H ₂ O ₂	2.58	4×10 ⁻³ -9.2×10 ⁻² mM	54.20066 μA mM ⁻¹	0.99986	9.0×10 ⁻⁴ M

Fig. S5. The UV-vis absorption spectra of aqueous RhB under UV light irradiation in the present of complexes 1–6.

Fig. S6. The UV-vis absorption spectra of aqueous AF under UV light irradiation in the present of complexes 1–6.

Fig. S7. Degradation rates of complexes 1–6 as catalysts in cyclic test.

Fig. S8. The UV-vis absorption spectra of aqueous MO+RhB under UV light irradiation in the present of complexes 1–6.

Fig. S9. The PXRD patterns of complexes 1–6 (Before and after photocatalysis of RhB).