Supporting Information

Nucleation Behaviour of Racemic and Enantiopure Histidine

Lina C. Harfouche,^a Simon Clevers,^a Gérard Coquerel,^a and Ivo B. Rietveld^{*,a,b}

Figure S 1. Experimental setup Second Harmonic Generation Apparatus constituted of Nd:YAG Q-
switched laser operating at 1064 nm2
Figure S 2. Surface plot of relationships between the measured values (the lighter the colour, the
higher the nucleation rate)
Figure S 3. Experimentally obtained probability distribution P(t) of the induction time for L-histidine
at T = 25, 20, 15 and 10 $^{\circ}$ C and C ₀ = 67.7, 74.4, 77.9 and 83.4 mg/g. The solid lines are fits of equation
1 to the experimental data3
Figure S 4. Experimentally obtained probability distribution P(t) of the induction time for DL-histidine
at T = 15, 10, 7 and 5 $^{\circ}$ C and C ₀ = 33.0, 34.5, 36.0 and 38.0 mg/g. The solid lines are fits of equation 1
to the experimental data
Figure S 5. Plot of $\ln(J/\beta \ln\beta)$ versus $1/\ln^2\beta$ and for four different temperatures. The experimental
data are given by colored circles and the solid lines are the best fit to the experimental points4
Figure S 6. $\Delta G^*(kJ.mol-1)$ values for L-Histidine (1.7 $\leq \beta \leq$ 2.4) and DL-Histidine (2.6 $\leq \beta \leq$ 3.6)5
Figure S 7. n* (molecules) values for L-Histidine (1.7 $\leq \beta \leq$ 2.4) and DL-Histidine (2.6 $\leq \beta \leq$ 3.6)6
Figure S 8. SHG spectra obtained using Kurtz&Perry test. Samples give a signal at circa 0.5% of the
signal of alpha-quartz (45μm)6
Figure S 9. Aggregate of racemic histidine obtained by precipitation (β = 15) in stagnant aqueous
solution; left optical microscopy (bright field), middle SHG microscopy, right overlay of optical and
SHG microscopy
Figure S 10. SHG emission spectra obtained using SHG microscopy for excitation wavelength of
900nm and 1200 nm

Table S 1. Estimated parameters for interface-transfer and volume-diffusion control for histidine	.4
Table S 2. Comparison of the parameters A and B obtained by regressing experimental data and	
those obtained theoretically.	.4
Table S 3. ΔG*(kJ.mol ⁻¹) values for L-Histidine	.4
Table S 4. n* (molecules) values for L-Histidine	.5
Table S 5. ΔG*(kJ.mol-1) values for DL-Histidine	.5
Table S 6. n* (molecules) values for DL-Histidine	.5

Classic Nucleation Theory, equations S1 to S7

^{b.}Université de Paris, Faculté de Pharmacie, 4 avenue de l'observatoire, 75006, Paris, France.

^{a.} Université de Rouen Normandie, UFR des Sciences et Techniques, Laboratoire SMS-EA3233, Place Emile Blondel, 76821, Mont-Saint-Aignan, France.

^{*} E-mail: ivo.rietveld@univ-rouen.fr

Figure S 1. Experimental setup Second Harmonic Generation Apparatus constituted of Nd:YAG Q-switched laser operating at 1064 nm.

DL-Histidine

Figure S 2. Surface plot of relationships between the measured values (the lighter the colour, the higher the nucleation rate).

Figure S 3. Experimentally obtained probability distribution P(t) of the induction time for L-histidine at T = 25, 20, 15 and 10 °C and $C_0 = 67.7$, 74.4, 77.9 and 83.4 mg/g. The solid lines are fits of equation 1 to the experimental data.

Figure S 4. Experimentally obtained probability distribution P(t) of the induction time for DL-histidine at T = 15, 10, 7 and 5 °C and C_0 = 33.0, 34.5, 36.0 and 38.0 mg/g. The solid lines are fits of equation 1 to the experimental data.

Table S 1. Estimated parameters for interface-transfer and volume-diffusion control for histidine.

a ₁ (J.mol ⁻¹ .K ⁻¹ .m ⁻³)	bı	a _D (J.mol ⁻¹ .K ⁻¹ .m ⁻³)	b⊳
4.5 x 10 ²⁷	2.2	5.5 x 10 ²⁷	5.5 x 10 ²⁷

Figure S 5. Plot of $\ln(J/\beta \ln\beta)$ versus $1/\ln^2\beta$ and for four different temperatures. The experimental data are given by colored circles and the solid lines are the best fit to the experimental points.

Table S 2. Comparison of the parameters A and B obtained by regressing experimental data and those obtained theoretically.

	T (°C)	<i>B</i> _D (exp)	$A_{D(exp)}/ln\beta$	BD (predicted)	A_D (predicted) / $ln\beta$
	25	7.2 x 10 ⁻¹	$2.4 \ge 10^4$	7.2 x 10 ¹	2.7 x 10 ³⁵
<i>L</i> -Hic	20	7.0 x 10 ⁻¹	$1.4 \ge 10^4$	7.0 x 10 ¹	2.1 x 10 ³⁵
<i>L</i> -1115	15	8.3 x 10-1	1.5 x 104	10.8 x 101	1.6 x 10 ³⁵
	10	10.2 x 10 ⁻¹	1.6 x 10 ⁴	11.7 x 10 ¹	1.2 x 10 ³⁵
	15	6.4	4.9 x 10 ⁴	2.3 x 10 ²	5.1 x 10 ³⁴
<i>DL</i> -His	10	11.3	12.2 x 10 ⁴	2.7 x 10 ²	3.2 x 10 ³⁴
	7	14.4	5.7 x 104	3.1 x 10 ²	2.2 x 10 ³⁴
	5	20.7	8.2 x 10 ⁴	3.5 x 10 ²	1.6 x 10 ³⁴

Table S 3. $\Delta G^*(kJ.mol^{-1})$ values for L-Histidine.

β Τ (°C)	1.7	1.8	1.9	2.1	2.2	2.4
25	6.42	5.24	4.39	3.29	2.91	2.36
20	7.86	6.40	5.37	4.02	3.56	2.89
15	9.62	7.84	6.57	4.92	4.36	3.53
10	10.04	8.18	6.86	5.13	4.55	3.69

β Τ (°C)	1.7	1.8	1.9	2.1	2.2	2.4
25	9.77	7.19	5.52	3.57	2.98	2.18
20	12.16	8.94	6.87	4.45	3.71	2.71
15	15.14	11.14	8.55	5.54	4.61	3.37
10	16.07	11.83	9.08	5.88	4.90	3.58

Table S 4. n* (molecules) values for L-Histidine.

Table S 5. $\Delta G^*(kJ.mol-1)$ values for DL-Histidine.

β Τ (°C)	2.6	2.7	2.8	2.9	3.1	3.6
15	17.79	16.46	15.32	14.32	12.69	9.90
10	28.72	26.58	24.73	23.13	20.48	15.98
7	40.09	37.10	34.53	32.29	28.59	22.31
5	55.17	51.05	47.51	44.43	39.35	30.70

Table S 6. n* (molecules) values for DL-Histidine.

β Τ (°C)	2.6	2.7	2.8	2.9	3.1	3.6
15	15.54	13.84	12.42	11.24	9.36	6.45
10	25.54	22.74	20.42	18.46	15.39	10.60
7	36.04	32.08	28.80	26.05	21.71	14.96
5	49.95	44.47	39.92	36.10	30.09	20.73

Figure S 6. $\Delta G^*(kJ.mol-1)$ values for L-Histidine (1.7 $\leq \beta \leq$ 2.4) and DL-Histidine (2.6 $\leq \beta \leq$ 3.6).

Figure S 7. n^* (molecules) values for L-Histidine (1.7 $\leq \beta \leq$ 2.4) and DL-Histidine (2.6 $\leq \beta \leq$ 3.6).

Figure S 8. SHG spectra obtained using Kurtz&Perry test. Samples give a signal at circa 0.5% of the signal of alpha-quartz (45μm).

Figure S 9. Aggregate of racemic histidine obtained by precipitation ($\beta = 15$) in stagnant aqueous solution; left optical microscopy (bright field), middle SHG microscopy, right overlay of optical and SHG microscopy.

Figure S 10. SHG emission spectra obtained using SHG microscopy for excitation wavelength of 900nm and 1200 nm.

Theory:

According to CNT for homogeneous nucleation, the kinetic parameter A for volume-diffusion is given by:

$$A_{\text{D,hom}} = (kT/\nu_0^2 \gamma)^{1/2} D \text{sln } \beta$$
(S1)

 v_0 is the molecular volume defined as:

$$u_0 = M/\rho_c N_A \tag{S2}$$

Where M is the molar mass, ρ_c is the crystal density and N_A is Avogadro number (6.022 x 10⁻²³ mol⁻¹).

The diffusion coefficient *D* is calculated using this equation:

$$D = kT/6\pi r_0 \eta$$
(S3)

In equation (S3), r_0 is the radius of the molecule calculated from the molecular volume (r_0 = 3.53 Å) and η is the dynamic viscosity given in (Pa·s) estimated using the following equation for pure water: $\eta = (0.0010 + 0.246)/((0.055940 + 5.2842)0 + 137.37)$ with 0 the temperature in °C.

J for volume-diffusion control:

$$J=a_{\rm D} T/\eta \left(\ln(\rho_{\rm c}/{\rm Ms})\right)^{0.5} s\beta \ln(\beta) \exp(-b_{\rm D}(\ln^2(\rho_{\rm c}/{\rm Ms}))/(\ln^2\beta))$$
(S4)

and a_1 , a_D , b_1 and b_D are given by:

$$a_{\rm I} = (4\pi/3\nu_0)^{1/3} (0.514(\rho_c/MN_A)^{2/3})^{1/2} k N_A/6\pi r_0$$
(S5)

$$a_{\rm D} = (1/0.514 \,\nu_0^2 \,(\rho_{\rm C \,N_A}/{\rm M})^{2/3})^{1/2} \,k \,N_A/6 \,\pi \,r_0 \tag{S6}$$

$$b_{\rm I} = b_{\rm D} = 16 \,\pi \,\nu_0^2 / 3 \,(0.514)^3 \,(\rho_{\rm C \,N_A}/{\rm M})^2 \tag{S7}$$