Supporting Information

Structures and Catalytic Oxidative Coupling Reaction of Four Co-MOFs Modified by R-isophthalic acid (R=H, OH and COOH) and Trigonal ligands

Qing Liu^a, Lin-Yan Zhang,^a Yu-Mei Bao,^a Na Zhang^{*, a}, Jian-Yong Zhang^{*, a}, Yuan-Yuan Xing^a, Wei Deng,^a Zhen-Jiang Liu^{*,a}

^a School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418 (P. R. China). E-mail: nzhang@sit.edu.cn, jianyong1106@163.com, zjliu@sit.edu.cn

Fig. S1. The FT- IR spectra of the four Co-MOFs presented in this paper.

Fig. S2. The TGA curves for the reported four Co-MOFs in this paper.

Fig. S3. The comparison of the observed and calculated PXRD patterns from the Co-MOFs.

Fig. S4. The 3D framework of **Co-MOF-3**, showing the uncoordinated –OH groups in OH-BDC²⁻ ligands (highlighted in green color).

Fig. S5. Time dependence of conversion using different Co-MOFs as catalysts.

Fig. S6. The XPS survey spectra for N 1s (a) and O1s (b) of **Co-MOF-4** catalyst before and after catalysis reaction.

tea sona [i i] t		
2.154(3)	Co1-O2	2.193(4)
2.019(4)	Co1-O4#1	2.060(3)
2.118(3)	Co1-N2	2.159(3)
98.70(12)	O3#1-Co1-O4#2	119.66(14)
92.20(13)	O4#2-Co1-N1	89.77(12)
89.16(14)	O4#2-Co1-O1	149.75(14)
89.22(14)	O4#2-Co1-N2	84.97(12)
174.56(13)	O1-Co1-N2	86.56(12)
148.93(12)	O4#2-Co1-O2	91.41(13)
87.48(14)	O1-Co1-O2	60.28(12)
94.01(14)		
	2.154(3) 2.019(4) 2.118(3) 98.70(12) 92.20(13) 89.16(14) 89.22(14) 174.56(13) 148.93(12) 87.48(14) 94.01(14)	2.154(3) Co1-O2 2.019(4) Co1-O4#1 2.118(3) Co1-N2 98.70(12) O3#1-Co1-O4#2 92.20(13) O4#2-Co1-N1 89.16(14) O4#2-Co1-N2 174.56(13) O1-Co1-N2 148.93(12) O4#2-Co1-O2 87.48(14) O1-Co1-O2 94.01(14) O4

Table S1. Selected bond [Å] and angles [°] for Co-MOFs

Symmetry codes f	or Co-MOF	-1: #1 -x+y+2/3, -x-	+1/3, z+1/3;
#2 x-y+1/3, x-1/3, -	z+5/3.		
Co1-O1#1	1.997(3)	Co1-O2	1.998(3)
Co1-O3#3	2.201(3)	Co1-O4#3	2.249(3)
Co1-N1	2.153(3)	Co1-N3#2	2.147(3)
O1#1-Co1-O2	120.73(13)	O1#1- Co1-N3#2	93.43(12)
O2-Co1-N3#2	88.97(12)	O1#1- Co1-N1	88.68(12)
O2-Co1-N1	88.01(12)	N3#2-Co1-N1	176.91(12)
O1#1-Co1-O3#3	87.21(13)	O2-Co1-O3#3	151.40(13)
N3#2-Co1-O3#3	95.77(12)	N1-Co1-O3#3	86.59(12)
O1#1-Co1-O4#3	146.25(12)	O2-Co1-O4#3	92.61(12)
N3#2-Co1-O4#3	92.16(12)	N1-Co1-O4#3	87.32(12)
O3#3-Co1-O4#3	59.11(12)		
Symmetry code f	or Co-MOF	-2 : #1 -x+1/2, -y+	-1/2, -z; #2
x-1/2, -y+1/2, z-1/2	; #3 -x+1/2, ;	y+1/2, -z+1/2.	
Co1-O3#1	2.199(3)	Co1-O4#1	2.178(3)
Col-Ol	2.008(3)	Co1-O2#2	2.048(2)
Col-Nl	2.160(3)	Co1-N2	2.137(3)
O1-Co1-O2#2	118.29(11)	O1-Co1-N2	92.53(12)
O2#2-Co1-N2	89.92(10)	O1-Co1-N1	89.55(11)
O2#2-Co1-N1	85.13(10)	N2-Co1-N1	175.04(10)
O3#1-Co1-O2#2	150.15(12)	O2#2-Co1-O4#1	92.18(11)
N2-Co1-O4#1	87.55(12)	N1-Co1-O4#1	92.94(12)
O3#1-Co1-O1	90.20(12)	O4#1-Co1-O3#1	59.70(11)
N2-Co1-O3#1	98.00(11)	N1-Co1-O3#1	86.49(11)
Symmetry code fo	or Co-MOF-	3 : #1 -x+y+2/3, -x	+4/3, z+1/3;
#2 -x+4/3, -y+5/3,	-z+2/3.		
Co1-O1	2.0001(10)	Co1-O2#1	2.0082(8)
Co1-O6#2	2.1219(8)	Co1-O5#2	2.2833(10)
Co1-N1	2.1756(11)	Co1-N2#2	2.1627(12)
Co2-O3	2.0810(8)	Co2-O7	2.1096(11)
Co2-N3#4	2.1633(11)		
O1-Co1-O2#1	113.13(4)	O1- Co1-O6#2	91.80(4)
O2#1-Co1-O6#2	154.95(4)	O1- Co1-N2#2	91.10(5)
O2#2-Co1-N2#2	89.43(4)	O6#2-Co1-N2#2	87.62(4)
O1-Co1-N1	89.20(5)	O2#1-Co1-N1	90.47(4)
O6#2-Co1-N1	92.34(4)	N2#2-Co1-N1	179.70(4)
O1-Co1-O5#2	150.93(4)	O2#1-Co1-O5#2	95.92(3)
O6#2-Co1-O5#2	59.25(3)	N2#2-Co1-O5#2	90.38(4)
N1-Co1-O5#2	89.34(4)	O3-Co2-O3#3	180.00(5)
O3-Co2-O7	88.94(4)	O3#3-Co2-O7	91.05(4)
O7-Co2-O7#3	180.0	O3-Co2-N3#4	91.21(4)
O3#3-Co2-N3#4	88.79(4)	O7-Co2-N3#4	89.33(5)

O7#3-Co2-N3#4	90.67(5)	N3#4-Co2-N3#5	180.0
Symmetry code for	Co-MOF-4	4 : #1 -x+1, -y, -z+1;	#2 -x, -y, -
z+1; #3 -x+1, -y+1, -	z; #4 -x, -y⊣	+1, -z+1; #5 x+1, y, z	z-1.

Table S2. Effect of the reaction temperature and time for the oxidative coupling reaction.^a

Entry	Catalyst	Base	Temp.(°C)	Time (h)	Conv.(%) ^b
1				2	7
2	Co-MOF-4	KOH	rt.	6	30
3				12	50
4				2	13
5	Co-MOF-4	KOH	60	6	42
6				12	76
7				2	18
8	Co-MOF-4	KOH	100	6	54
9				8	73
10				2	48
11	Co-MOF-4	KOH	120	8	85
12				12	74

^a 1a (1.0 mmol), 2a (1.5 mmol), **Co-MOF-4** (0.2 mmol%), KOH (0.1 mmol), pyrene (100 μ L, as an internal standard), solvent-free conditions; ^b determined by GC-MS.

The computed results of the (3,8)-connected net of **Co-MOF-1** and **Co-MOF-3** by TOPOS 4.0 are as follows:

Topology for Sc1

Atom Sc1 links by bridge ligands and has

Con	nme	on vertex wi	th			R(A-A)	
V	2	0.3333	0.6667	0.4161	(000)	7.920A	1
V	2	0.0000	0.0000	0.2506	(000)	7.920A	1
V	1	0.0000	0.0000	0.4281	(0-10)	7.984A	1
V	1	0.3333	0.6667	0.2386	(000)	7.984A	1
Sc 1	L	0.5000	0.5000	0.0000	(00-1)	10.591A	1
Sc 1	l	-0.1667	0.1667	0.6667	(001)	10.591A	1
Sc 1	l	0.3333	0.1667	0.6667	(001)	10.591A	1
Sc 1	l	0.0000	0.5000	0.0000	(00-1)	10.591A	1
Тор	olo	gy for V1					

Atom V1 links by bridge ligands and has

Common vertex with					R(A-A)	
Sc 1	0.6667	0.8333	0.3333	(110)	7.984A	1
Sc 1	0.1667	0.8333	0.3333	(010)	7.984A	1
Sc 1	0.1667	0.3333	0.3333	(000)	7.984A	1

Topology for V2

Atom V2 links by bridge ligands and has

Common vertex with					R(A-A)		
Sc 1	-0.3333	-0.1667	0.3333	(000)	7.920A	1	
Sc 1	0.1667	-0.1667	0.3333	(000)	7.920A	1	
Sc 1	0.1667	0.3333	0.3333	(000)	7.920A	1	

Structural group analysis

Structural group No 1

Structure consists of 3D framework with V4Sc3

Coordination sequences

 Sc1:
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

 Cum
 9
 33
 89
 195
 363
 605
 937
 1371
 1923
 2605

 V1:
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

 Num
 3
 16
 41
 86
 145
 221
 302
 406
 515
 647

 Cum
 4
 20
 61
 147
 292
 513
 815
 1221
 1736
 2383

 V2:
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

 Num
 3
 16
 41
 86
 145
 221
 302
 406
 515
 647

 Cum
 4
 20
 61
 147
 292
 513
 815
 1221
 1736
 2383

TD10=2478

Vertex symbols for selected sublattice

Sc1 Point (Schlafli) symbol: {4^12;6^10;8^6}

Extended point

V1 Point (Schlafli) symbol: {4^3} Extended point symbol: [4(2).4(2).4(2)]

V2 Point (Schlafli) symbol: {4^3}

Extended point symbol: [4(2).4(2).4(2)]

Point (Schlafli) symbol for net: {4^12;6^10;8^6}3{4^3}4 3,8-c net with stoichiometry (3-c)4(8-c)3; 2-nodal net