Designed stabilized covalent interfacial coupling of Li₃V₂(PO₄)₃ with carbon framework for boosting lithium storage kinetics

Donglei Guo^a, Mengmeng Yang^a, Mengke Yang^a, Taixin Yang^a, Guobin Hu^b, Huigen Liu^b, Guilong Liu^a, Naiteng Wu^a, Aimiao Qin^{b,*} and Xianming Liu^{a,*}

^a Key Laboratory of Function-oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, P. R. China. *Email: myclxm@163.com

 ^b Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
*Email: 2005032@glut.edu.cn

Fig. S1 Digital photographs and FESEM images of hydrothermal synthesis materials

and LVP@C.

Fig. S2 FESEM images of LVP@Glu.

Fig. S3 EDS spectrum of LVP@C.

Fig. S4 N_2 adsorption-desorption isotherm (a) and pore size distribution (b) of

LVP@C according to the NLDFT model.

Fig. S5 (a) XPS curve of survey spectrum of LVP@C; (b) The high-resolution spectrum of V 2p.

Fig. S6 The FTIR spectra curves of LVP@C and LVP@Glu.

Fig. S7 CV curves of LVP@C at a scan rate of 0.1 mV s⁻¹

Fig. S8 XRD patterns of LVP@C electrode (fresh and after 2000 cycles).