A ratiometric fluorescent sensor of a terbium coordination polymer for the

anthrax biomarker 2,6-dipicolinic acid with on-site detection assisted by

smartphone APP

Miao-Miao Qiu,^a Ke-Fu Chen,^b Qi-Rui Liu,^a Wei-Ni Miao,^c Bing Liu,^{a*} and Ling Xu^{c*}

^{a.} College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi Province, P. R. China

E-mail: liubing@sust.edu.cn

^{b.} College of Information Engineering, Henan University of Science and Technology, Luoyang 471000, Henan Province, P. R. China.

^{c.} Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced

Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi Province, P. R. China

Empirical formula	CueHcOcTh				
Color and Habit	Colorless platelet				
Crystal Size (mm^3)	$0.22 \times 0.16 \times 0.05$				
Crystal system	monoclinic				
Space group	$\mathbf{D}_{2_{1}/2}$				
$a(\lambda)$	$12_{1}/c$ 12.0504(7)				
$\mathcal{U}(\mathbf{A})$	12.9304(7)				
$D(\mathbf{A})$	12.8021(0)				
$\mathcal{C}(\mathbf{A})$	6.8288(4)				
α/\circ	90				
β_{i}°	94.149(5)				
γ/\circ	90				
V/A ³	1129.20(10)				
Ζ	4				
Fw	417.10				
$D_{\text{calcd}} (\text{Mgm}^{-3})$	2.453				
$\mu (\text{mm}^{-1})$	31.065				
F (000)	788.0				
2θ (°)	19.026 to 133.186				
Reflections measured	3782				
Independent reflections	1983 $[R_{int} = 0.0346, R_{sigma} = 0.0433]$				
S	1.064				
Final R_1 w R_2 indices (obs.)	$R_1 = 0.0456, wR_2 = 0.1188$				
R_1, wR_2 indices (all)	$R_1 = 0.0525, wR_2 = 0.1250$				
$R_1 = (\Sigma F_o - F_c / \Sigma F_o). \ wR_2 = [\Sigma (w(F_o^2 - F_c^2)^2) / \Sigma (w F_o^2 ^2)]^{1/2}$					

Table S1. The structural determination and refinement data for Tb-NDBC.

Table S2. Selected bond distances (Å) and bond angles (°) of Tb-NDBC.

bond distances						
Tb1-Tb1 ¹ =3.9549(7)	Tb1-O1=2.456(5)					
Tb1-O11=2.304(5)	Tb1-O1 ⁴ =2.572(5)					
Tb1-O12 ¹ =2.325(6)	Tb1-O2 ⁵ =2.371(5)					

Tb1-O13 ² =2.316(5)	Tb1-O2 ⁴ =2.568(5)
$Tb1-O14^3=2.260(5)$	
	bond angles
O11-Tb1-Tb1 ¹ =67.10(13)	O11-Tb1-O12 ¹ =136.15(19)
O11-Tb1-O13 ² =76.77(19)	O11-Tb1-O1 ³ =82.20(19)
O11-Tb1-O1=152.11(18)	O11-Tb1-O2 ⁴ =72.06(19)
O11-Tb1-O2 ³ =71.64(19)	O12 ¹ -Tb1-Tb1 ¹ =69.10(13)
$O12^{1}-Tb1-O1^{3}=92.2(2)$	O12 ¹ -Tb1-O1=70.69(18)
O12 ¹ -Tb1-O2 ⁴ =75.3(2)	$O12^{1}-Tb1-O2^{3}=71.6(2)$
O13 ² -Tb1-Tb1 ¹ =142.45(14)	O13 ² -Tb1-O12 ¹ =145.22(19)
O13 ² -Tb1-O1 ³ =80.14(18)	O13 ² -Tb1-O1=75.46(19)
O13 ² -Tb1-O2 ³ =123.30(19)	O13 ² -Tb1-O2 ⁴ =136.71(19)
O14 ⁵ -Tb1-Tb1 ¹ =117.18(13)	O14 ⁵ -Tb1-O11=101.14(19)
O14 ⁵ -Tb1-O12 ¹ =100.2(2)	O14 ⁵ -Tb1-O13 ² =78.74(19)
O14 ⁵ -Tb1-O1 ³ =157.20(17)	O14 ⁵ -Tb1-O1=75.98(18)
O14 ⁵ -Tb1-O2 ³ =152.28(17)	O14 ⁵ -Tb1-O2 ⁴ =78.64(18)
O1 ³ -Tb1-Tb1 ¹ -85.06(11)	O1-Tb1-Tb1 ¹ =139.30(13)
O1-Tb1-O1 ³ -90.48(10)	O1 ³ -Tb1-O2 ³ -50.23(17)
O1-Tb1-O2 ³ =122.92(17)	O2 ³ -Tb1-Tb1 ¹ =35.12(12)
O2 ⁴ -Tb1-Tb1 ¹ =38.54(13)	O24-Tb1-C13=98.24(19)
O24-Tb1-O13=123.31(17)	O24-Tb1-O1=132.52(18)
O24-Tb1-O23=73.7(2)	

Symmetry codes for bond distances: ¹ 1-*x*, 1-*y*, -*z*; ² -*x*, 1/2+*y*, -1/2-*z*; ³ -*x*, 1-*y*, -*z*; ⁴ *x*, 3/2-*y*, -1/2+*z*; ⁵ 1-*x*, -1/2+*y*, 1/2-*z*; For bond angles: 1-*x*, 1-*y*, -*z*; ² -*x*, 1/2+*y*, -1/2-*z*; ³ *x*, 3/2-*y*, -1/2+*z*; ⁴ 1*x*, -1/2+*y*, 1/2-*z*; ⁵ -*x*, 1-*y*, -*z*; ⁶ -*x*, -1/2+*y*, -1/2-*z*; ⁷ *x*, 3/2-*y*, 1/2+*z*; ⁸ 1-*x*, 1/2+*y*, 1/2-*z*.

Fig. S2. The linkage mode of $NDBC^{2-}$ ligand with three $Tb_2(COO)_2$ subunits.

Fig. S3. Experimental PXRD pattern of Tb-NDBC compared to the simulated one.

Fig. S4. The TG curve of Tb-NDBC.

Fig. S5. Experimental PXRD patterns of Tb-NDBC immersed in twelve organic solvents for 48 h compared to the one of Tb-NDBC.

Fig. S6. Experimental PXRD patterns of Tb-NDBC immersed in water for 1-48 h compared to the one of Tb-NDBC.

Fig. S7. Experimental PXRD patterns of Tb-NDBC immersed in HCl or NaOH aqueous solutions for 48h with pH =1-14 compared to the one of Tb-NDBC.

Fig. S8. Excitation spectra of Tb-NDBC and H₂NDBC recorded at ambient temperature.

Fig. S9. Emission spectra of Tb-NDBC suspension with standing for 0 and 10min (inset: photo of

cuvette taken under 365 nm UV light).

Fig. S10. The plot of I_{545}/I_{394} vs time of Tb-NDBC suspensions mixed with DPA with time ranging 0-25 min.

Fig. S11. The emission spectra of Tb-NDBC suspensions excited at 270 nm with pH ranging 1-14 without DPA added at ambient temperature.

Fig. S12. The emission spectra of Tb-NDBC suspensions excited at 270 nm with pH ranging 1-14 with DPA added at ambient temperature.

Fig. S13. The emission spectra of Tb-NDBC suspensions excited at 270 nm depending on the dosage of Tb-NDBC in 1-2 mg without DPA added at ambient temperature.

Fig. S14. The emission spectra of Tb-NDBC suspensions excited at 270 nm depending on the dosage of Tb-NDBC in 1-2 mg with DPA added at ambient temperature.

No	1	2	3	4	5	6	7	8	9	10	SD
1.01	-										(n=10)
I ₃₉₄	621.1	549.5	556.8	559.8	569.2	568.5	578.7	757.3	585.4	589	
I ₅₄₅	520.3	453.6	456.8	461.7	464.5	463.5	469.9	612.9	467	469	
I_{545}/I_{394}	0.838	0.825	0.820	0.825	0.816	0.815	0.812	0.809	0.798	0.796	0.01264

Table S3. Ten data of I_{545}/I_{394} for the blank sample

Table S4. Detection performance comparison of sensors to DPA detection

Sensors	Methods	Linear ranges	LODs	Refs
Tb-NDBC	Fluorometric	0-400µm	5.21µM	This work
Tb _{0.875} Eu _{0.125} -Hddb	Fluorometric	0-100 [́] µM	0.8494µM	1
$Eu_{0.1}Tb_{0.9}(NDBC)(H_2O)Cl$	Fluorometric	0-600 µM	0.248 µM	2
$Eu_{0,1}Tb_{0,9}(BPDC)(H_2O)Cl$	Fluorometric	0-400 µM	0.874 μM	2
$Eu_{0,1}Tb_{0,9}(BDC)(H_2O)Cl$	Fluorometric	0-300 µM	2.277 µM	2
Eu/Tb(BTC)	Fluorometric	0-1000 nM	1.087 µM	3
$[Tb_{0.43}Eu_{1.57}(1,4-phda)_3(H_2O)](H_2O)_2$	Fluorometric	0-800 nM	0.17 μM	4
NH ₂ -MOF-76(Eu);	Fluorometric	0–100 µM	3.8 µM	5
Tb ³⁺ /Eu ³⁺ @Ni-BTC	Fluorometric	0-20µM	14.7 nM	6
RSPh@EuBTC	Colorimetric,	0-140 μM	2.2 μM	7
0	Fluorometric	•	•	
1-Cu ²⁺	Fluorometric,	0-10nm	2μΜ	8
	Colorimetric		•	
EDTA-Eu ³⁺	Fluorometric	10-50nm	10nM	9
GMP-Tb/Eu	Fluorometric	2-16µM	96 nM	10
His@ZIF-8/Tb ³⁺	Fluorometric	0.08-10µM	0.02µM	11
TPE-TS@Eu/GMP ICP	Colorimetric	0-40µM	30, 27nm	12
Pal@FL@UiO-66-(COOH)2-Eu	Fluorometric	0-35µM	9.3 nM	13
TbP-CPs	Fluorometric	0-8.0µM	54nM	14
Tb-COP	Fluorometric	0.1-30µM	13.5 nM	15
R6H@Eu(BTC)	Fluorometric	0-80µM	4.5 μM	16
Atta-RhB@SiO2-EDTA-Tb	Fluorometric	0.1-40µM	9.8 nM	17
RiP/Eu ³⁺ CPs	Fluorometric	0-1µM	41.5 nM	18
EBT-Eu ³⁺	Fluorometric	2-10µM	2 μΜ	19
	Colorimetric	•	•	
Tb ³⁺ @UIO-67	Fluorometric	0.3-6µM	36 nM	20
UCNPs-TPP/EBT	Colorimetric	2-200µM	0.9µM	21
Eu@SiNPs	Fluorometric	4-20µM	0.15 μM	22
pSiNPs-Tb	Fluorometric	1-10µM	1.25 µM	23
Fe ₃ O ₄ -Tb NP	Fluorometric	20-1000nM	5.4 nM	24
HAP-NPs	Fluorometric	0.1-40µM	77 nM	25
AuNPs	SERS	0.5-4µM	5 fM	26
Si NPs/Tb-MOFs	Fluorometric	0.025-3µM	5.3 nM	27
CD-Cu(II)	Fluorometric	0.25-20µM	12 nM	28
CdS@ZIF-8	Fluorometric	0.1-150µM	67 nM	29
CDs-Tb	Fluorometric	0.0005-2.5µM	0.1 nM	30
OG-CDs	Fluorometric	0.5-12.5µM	56 nM	31
Eu-CDs	Fluorometric	5-700nM	5nM	32
FMn-CDs	Fluorometric	0.1-750nM	0.1 nM	33
CDs-Eu	Fluorometric	0.5nM-5µM	0.8 nM	34
hPEI-CD-EDTA-Eu ³⁺	Fluorometric	1.0-100nM,	190 pM	35
EBT-CDs@Eu	Fluorometric	0.1 - 12.0μM	10.64 nM	36
$C_{10}^{10}OD = E_{10}^{3+}$	F1 · '	1 120 34	0.2 M	27
CdS QDs -Eu ³⁺	Fluorometric	1-120µM	0.2 μM	37
BCNO QDS-EDTA-Eu ³⁺	Fluorometric	0-700nM	0.5 nM	38
$S_1QD_S-NH_2-EDTA-Eu$	Fluorometric	0-34µM	1.02 μM	39
Au(\mathcal{A} GSH NC-Cu ²⁺	Fluorometric	I-4μM	19nM	40
$Sm^{3+}/Au(0)@Au(1)-SG NCs$	Fluorometric	1-120µM	0.1 μM	41
BSA-Au NCs	Fluorometric	0-66./µM	35.8 nM	42

Note: H_4 ddb=1,3-di(3',5'-dicarboxylphenyl)benzene; BPDC²=4,4'-biphenyldicarboxylate; BDC²=1,4-benzenedicarboxylate; BTC³= 1,3,5-benzenetricarboxylate;1,4-phda=1,4-phenylenediacetic acid; 1=atechol-substituted monostyryl boradiazaindacene probe; EDTA=ethylenediaminetetraacetic acid dianhydride; GMP=guanine 5'-monophosphate; R6H=rhodamine-based sensing probe; monophosphate; His=L-histidine; ZIF=zeolitic imidazolate framework; TPE-TS=tetra(4-sulfophenyl)ethylene; ICP=Infifinite coordination polymer; Pal@FL=Pal-doped fluorescein; RSPh=rhodamine; TbP=terbium; CPs=coordination polymer microspheres; COP=covalent organic polymer; Atta=attapulgite; RhB= Rhodamine B; RiP = riboflflavin-50-phosphate; EBT=eriochrome Black T; UCNPs=upconversion nanoparticles; TPP=tripolyphosphate; pSiNPs=porous silicon nanoparticles; HAP=hydroxyapatite; CD=carbon dot; OG=orange/green dual-emissive; FMn=functionalized manganese-doped; hPEI=hyperbranched polyethyleneimine; QDs= quantum dots; BCNO =boron carbon oxynitride; GSH=glutathione; NCs=nanoclusters; SG =glutathione; BSA=bovine serum albumin; phosphonate.

Fig. S15. The emission spectra of 1.8 mg Tb-NDBC suspensions excited at 270 nm with fourteen kinds of 1 mM interferents with photos taken under 365 nm UV light.

Fig. 16. The durability of Tb-NDBC in five DPA detections.

Fig. S17. The PXRD pattern of Gd-NDBC comparing to Tb-NDBC.

Fig. S18. Phosphorescence spectrum of Gd-NDBC under 340 nm excitation at 77K.

Fig. S19. The fluorescence lifetime of Tb^{3+} in Tb-NDC without DPA.

Fig. S20. The fluorescence lifetime of Tb^{3+} in Tb-NDC with DPA.

Fig. 21. The emission spectra of Tb-NDBC suspensions in human serum with $C_{DPA} = 100$, 200 and 300 μ M excited at 270 nm at ambient temperature.

Fig. 22. The emission spectra of Tb-NDBC suspensions in lake water with $C_{DPA} = 100$, 200 and 300 μ M excited at 270 nm at ambient temperature with photos taken under 365 nm UV light.

^{1.} X. B. Chen, C. X. Qi, Y. B. Xu, H. Li, L. Xu and B. Liu, J. Mater. Chem. C, 2020, 8, 17325.

^{2.} M. L. Shen, B. Liu, L. Xu and H. Jiao, J. Mater. Chem. C, 2020, 8, 4392.

^{3.} M. N. Wu, Y. X. Zhuang, J. B. Liu, W. W. Chen, X. Y. Li and R. J. Xie, Opt. Mater., 2020, 106, 110006.

^{4.} J. Othong, J. Boonmak, F. Kielar, S. Hadsadee, S. Jungsuttiwong and S. Youngme, Sensor. Actuat B-Chem., 2020, 316, 128156.

D. Wu, Z. Zhang, X. W. Chen, L. K. Meng, C. G. Li, G. H. Li, X. B. Chen, Z. Shi and S. H. Feng, *Chem. Commun.*, 2019, 55, 14918.

^{6.} H. Lei, C. X. Qi, X. B. Chen, T. Zhang, L. Xu and B. Liu, New J. Chem., 2019, 43, 18259.

- X. M. Li, J. Y. Zhao, Y. Y. Zhu, B. L. Wang, X. F. Wei, Y. Y. Shao, Y. S. Ma and T. Y. Jiang, Spectrochim. ACTA A., 2020, 229, 117999.
- 8. Y. Cetinkaya, M.N.Z. Yurt, H. Avni Oktem and M.D. Yilmaz, J. Hazard. Mater., 2019, 377, 299.
- 9. M. Donmez, H.A. Oktem and M.D. Yilmaz, Carbohydr. Polym., 2018, 180, 226
- 10. N. Gao, Y. F. Zhang, P. C. Huang, Z. H. Xiang, F. Y. Wu and L. Q. Mao, Anal. Chem., 2018, 90, 7004.
- 11. L. Guo, M. Liang, X. Wang, R. Kong, G. Chen, L. Xia and F. Qu, Chem. Sci., 2020, 11, 2407.
- 12. C. Huang, R. Ma, Y. Luo, G. Shi, J. Deng and T. Zhou, Anal. Chem., 2020, 92, 12934.
- 13. L. Jia, X. Chen, J. Xu, L. Zhang, S. Guo, N. Bi and T. Zhu, J. Hazard. Mater., 221, 402, 123776.
- 14. Y. Luo, L. Zhang, L. Zhang, B. Yu, Y. Wang and W. Zhang, ACS Appl. Mater. Interfaces, 2019, 11, 15998.
- 15. S. Qu, N. Song, G. Xu and Q. Jia, Sensors Actuat. B-Chem., 2019, 290, 9.
- 16. J. B. Dunn, M. L. Burns, S. E. hunter and P. E. Savage, J. Supercrit. Fluid., 2003, 27, 263.
- J. Xu, X. Shen, L. Jia, C. Zhang, T. Ma, T. Zhou, T. Zhu, Z. Xu, J. Cao, B. Liu, N. Bi, L. Liu and Y. Li, *Dyes Pigments*, 2018, 148, 44.
- 18. S. F. Xue, J. F. Zhang, Z. H. Chen, X. Y. Han, M. Zhang and G. Shi, Anal. Chim. Acta, 2018, 1012, 74.
- 19. M. D. Yilmaz and H.A. Oktem, Anal. Chem., 2018, 90, 4221.
- 20. X. Zhang, W. Zhang, G. Li, Q. Liu, Y. Xu and X. Liu, Mikrochim. Acta, 2020, 187, 122.
- 21. Z. H. Cheng, X. Liu, S. Q. Zhang, T. Yang, M. L. Chen and J. H. Wang, Anal. Chem., 2019, 91, 12094
- 22. M. Na, S. Zhang, J. Liu, S. Ma, Y. Han, Y. Wang, Y. He, H. Chen and X. Chen, J. Hazard. Mater., 2020, 386, 121956.
- 23. Y. Jung, S. Kang, J. An, J. Jung and D. Kim, Dyes Pigments, 2020, 182, 108700.
- 24. T. M. Koo, M. J. Ko, B. C. Park, M. S. Kim and Y. K. Kim, J. Hazard. Mater., 2021, 408, 124870.
- 25. Y. Li, X. Li, D. Wang, C. Shen and M. Yang, Mikrochim. Acta, 2018, 185, 435.
- T. K. Naqvi, A. Bajpai, M. S. S. Bharati, M. M. Kulkarni, A. M. Siddiqui, V. R. Soma, P. K. Dwivedi, *J. Hazard. Mater.*, 2021, 407, 124353.
- D. Yang, S. Mei, Z. Wen, X. Wei, Z. Cui, B. Yang, C. Wei, Y. Qiu, M. Li, H. Li, W. Zhang, F. Xie, L. Wang and R. Guo, *Mikrochim. Acta*, 2020, 187, 666.
- 28. P. Li, A. N. Ang, H. Feng and S. F. Y. Li, J. Mater. Chem. C, 2017, 5, 6962
- 29. X. Li, J. Luo, L. Deng, F. Ma and M. Yang, Anal. Chem., 2020, 92, 7114.
- 30. M. L. Liu, B. B. Chen, J. H. He, C. M. Li, Y. F. Li and C. Z. Huang, Talanta, 2019, 191, 443.
- 31. L. F. Pang, H. Wu, M. X. Wei, X. F. Guo and H. Wang, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 244, 118872.
- 32. M. Rong, X. Deng, S. Chi, L. Huang, Y. Zhou, Y. Shen and X. Chen, Mikrochim. Acta, 2018, 185, 201.
- 33. M. Rong, Y. Liang, D. Zhao, B. Chen, C. Pan, X. Deng, Y. Chen and J. He, Sensors Actuat. B-Chem., 2018, 265, 498.
- 34. J. Wang, D. Li, Y. Qiu, X. Liu, L. Huang, H. Wen and J. Hu, Talanta, 2020, 220, 121377.
- 35. H. Yang, F. Lu, X. Zhan, M. Tian, Z. Yuan and C. Lu, Talanta, 2020, 208, 120368.
- 36. Q. Zhou, Y. Fang, J. Li, D. Hong, P. Zhu, S. Chen, K. Tan, Talanta, 2021, 222, 121548.
- 37. X. Li, L. Deng, F. Ma and M. Yang, Mikrochim. Acta, 2020, 187, 287.
- M. Rong, X. Yang, L. Huang, S. Chi, Y. Zhou, Y. Shen, B. Chen, X. Deng and Z. Q. Liu, ACS Appl. Mater. Interfaces, 2019, 11, 2336.
- 39. Z. Zhou, J. Gu, Y. Chen, X. Zhang, H. Wu and X. Qiao, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 212, 88.
- 40. M. M. F. Baig and Y. C. Chen, Analyst, 2019, 144, 3289.
- 41. M. I. Halawa, B. S. Li and G. Xu, ACS Appl. Mater. Interfaces, 2020, 12, 32888.

42. X. Liu, Y. Qiu, B. Li, Z. Li, Y. Zhang, J. Wang and Q. Xiong, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 240, 118541.