Supramolecular [Na(15-crown-5)]⁺ cations anchored to face sharing octahedral lead bromide chains featuring a rotor in a one-dimensional perovskite with a reversible isostructural phase transition near room temperature

Guo-Jun Yuan*a Hong Zhoua Li Lia Hong Chena Xiao-Ming Ren*b

^a Key Laboratory of Advanced Functional Materials of Nanjing, Department of Chemistry, Nanjing Xiaozhuang University, Nanjing 211171, P. R. China

^b State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and molecular of Engineering, Nanjing Tech University, Nanjing 211816,
P. R. China

Tel.: +86 25 58139476 Email: <u>ahchljygj@163.com; xmren@njtech.edu.cn</u>

Contents

Fig. S1: Simulated and experimental PXRD patterns of 1.

Fig. S2: TG plot of **1** in 303–1068 K.

Fig. S3: (a) An asymmetric unit of **1** with non-hydrogen atom labeling (the thermal ellipsoids are drawn at 30% probability level) (b) disordered 15-crown-5 molecule (c,

d) A face-sharing octahedral $[PbBr_3]_{\infty}$ chain linked to supramolecular [Na(15-crown-

5)]⁺ cations viewed along a-/b-axis, respectively, in HTP at 305 K.

Fig. S4: (a) Illustration for the rotors and stators (b, c) packing diagrams of onedimensional supramolecular rotors viewed along *b*- and *c*-axes for **1**.

Fig. S5: Variable-temperature cell Parameters in 1 between 100 and 350 K.

Fig. S6: Plots of dielectric permittivity real part versus frequency in 153–443 K for 1.

Table S1: Crystal data and structure refinements for **1** at 100, 150, 200, 250, 315, 330 and 350 K

Table S2: Selected bond lengths (Å) for 1 in LTP at 100 K

Table S3: Selected bond lengths (Å) for 1 in LTP at 150 K

Table S4: Selected bond lengths (Å) for 1 in LTP at 200 K

Table S5: Selected bond lengths (Å) for 1 in LTP at 250 K

Table S6: Selected bond lengths (Å) for 1 in LTP at 290 K

Table S7: Selected bond lengths (Å) for 1 in HTP at 305 K

Table S8: Selected bond lengths (Å) for 1 in HTP at 315 K

Table S9: Selected bond lengths (Å) for 1 in HTP at 330 K

Table S10: Selected bond lengths (Å) for 1 in HTP at 350 K

Table S11: The parameters of U_{eq} in **1** at 100, 150, 200, 250, 290, 305, 315, 330 and 350 K

Fig. S1: Simulated and experimental PXRD patterns of 1.

Fig. S2: TG plot of **1** in 303–1068 K.

Fig. S3: (a) An asymmetric unit of **1** with non-hydrogen atom labeling (the thermal ellipsoids are drawn at 30% probability level) (b) disordered 15-crown-5 molecule (c, d) A face-sharing octahedral $[PbBr_3]_{\infty}$ chain linked to supramolecular $[Na(15\text{-crown-5})]^+$ cations viewed along *a-/b*-axis, respectively, in HTP at 305 K.

Fig. S4: (a) Illustration for the rotors and stators (b, c) packing diagrams of onedimensional supramolecular rotors viewed along *b*- and *c*-axes for **1**.

Fig. S5: Variable-temperature cell Parameters in 1 between 100 and 350 K.

Fig. S6: Plots of dielectric permittivity real part versus frequency in 153–443 K for 1.

Temp./K	100	150	200	250
Wavelength/Å	0.71073	0.71073	0.71073	0.71073
Formula	$C_{10}H_{20}Br_3NaO_5Pb$	$\mathrm{C_{10}H_{20}Br_{3}NaO_{5}Pb}$	$\mathrm{C_{10}H_{20}Br_{3}NaO_{5}Pb}$	$\mathrm{C_{10}H_{20}Br_{3}NaO_{5}Pb}$
Formula WG	690.17	690.17	690.17	690.17
SG	Pnma	Pnma	Pnma	Pnma
CCDC no.	1951851	1951853	1951870	2098317
Crystal system	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic
a (Å)	7.8228(3)	7.8377(3)	7.8558(3)	7.8755(3)
b (Å)	13.8222(6)	13.8396(6)	13.8616(5)	13.8822(5)
c (Å)	16.4334(8)	16.4718(8)	16.5205(7)	16.5729(7)
$V(Å^3)/Z$	1776.92(13)/4	1786.71(13)/4	1798.98(12)/4	1811.90(12)
ρ (g·cm ⁻¹)	2.580	2.566	2.548	2.530
F(000)	1272	1272	1272	1272
Abs. coeff. (mm ⁻¹)	16.277	16.188	16.077	15.962
θ Ranges/°	2.48-27.55	2.473-28.335	2.47-28.24	2.46-28.33
Index ranges	$-10 \le h \le 10$	$-10 \le h \le 10$	$-10 \le h \le 10$	$-10 \le h \le 10$
	$-17 \le k \le 17$	-17≤k≤ 17	$-17 \le k \le 17$	$-17 \le k \le 17$
	$-21 \le 1 \le 20$	$-21 \le l \le 21$	$-21 \le l \le 22$	$-21 \le 1 \le 22$
R _{int}	0.0474	0.0500	0.0523	0.0537
Indep. refl/	2122/	2297/	2313/	2321/
restr.	158/	153/	158/	158/
/para.	60	0	0	6
Refinement method		The least square	e refinement on F ²	
Goodness of fit on	1.042	1.036	0.992	1.031
F ²				
R_1 , w R_2 [I>2 σ (I)]	0.0226	0.0258	0.0262	0.0272
	0.0467	0.0492	0.0507	0.0496
R1, wR2 [all data]	0.0296	0.0363	0.0403	0.0474
	0.0487	0.0521	0.0546	0.0543
Residual (e·Å-3)	2.623/	2.355/	1.760/	1.527/
	-1.158	-1.602	-1.308	-1.635

Table S1: Crystal data and structure refinements for **1** at 100, 150, 200, 250, 315, 330 and 350 K

 $R_1 = \sum ||F_o| - |F_c|| / |F_o|, \ wR_2 = \left[\sum w (\sum F_o^2 - F_c^2)^2 / \sum w (F_o^2)^2\right]^{1/2}$

Temp./K	315	330	350
Wavelength/Å	0.71073	0.71073	0.71073
Formula	$C_{10}H_{20}Br_3NaO_5Pb$	$C_{10}H_{20}Br_3NaO_5Pb$	$C_{10}H_{20}Br_3NaO_5Pb$
Formula WG	690.17	690.17	690.17
SG	Pnma	Pnma	Pnma
CCDC no.	2098325	2098430	2098327
Crystal system	Orthorhombic	Orthorhombic	Orthorhombic
a (Å)	7.9139(3)	7.9192(3)	7.9357(3)
b (Å)	13.9195(6)	13.9256(6)	13.9514(6)
c (Å)	16.6734(8)	16.7036(8)	16.7733(8)
$V(Å^3)/Z$	1836.70(14)	1842.07(14)	1857.04(14)/4
ρ (g·cm ⁻¹)	2.496	2.489	2.469
F(000)	1272	1272	1272
Abs. coeff. (mm ⁻¹)	15.747	15.701	15.574
θ Ranges/°	2.44-27.45	2.43-27.36	2.43-27.36
Index ranges	$-10 \le h \le 10$	$-10 \le h \le 10$	$-10 \le h \le 10$
	$-17 \le k \le 17$	$-17 \le k \le 17$	-17≦k≤17
	$-21 \le 1 \le 21$	$-21 \le 1 \le 21$	-21≤l≤ 21
R _{int}	0.0592	0.0608	0.0604
Indep. refl/	2184/	2186/	2214/
restr.	158/	158/	158/
/para.	12	120	120
Refinement method	TI	he least square refinement on	F ²
Goodness of fit on F ²	1.027	1.038	1.027
R_1 , w R_2 [I>2 σ (I)]	0.0282	0.0314	0.0340
	0.0444	0.0518	0.0543
R_1 , w R_2 [all data]	0.0536	0.0589	0.0676
	0.0494	0.0577	0.0619
Residual (e·Å-3)	1.151/	1.003/	1.074/
	-0.966	-0.932	-0.832

To continue Table S1

 $R_1 = \sum ||F_o| - |F_c|| / |F_o|, \ wR_2 = \left[\sum w(\sum F_o^2 - F_c^2)^2 / \sum w(F_o^2)^2\right]^{1/2}$

Bond	Bond lengths / Å	Bond	Bond lengths / Å
Na(1)-Br(2)	2.9254(18)	Na(1)-O(1)	2.3853(47)
Pb(1)-Br(1)	2.9662(3)	Na(1)-O(1)'	2.3853(47)
Pb(1)-Br(1)#1	3.0568(3)	Na(1)-O(2)	2.4120(46)
Pb(1)-Br(1)#2	2.9662(3)	Na(1)-O(2)'	2.4120(46)
Pb(1)-Br(1)#3	3.0568(3)	Na(1)-O(3)	2.4202(42)
Pb(1)-Br(2)	3.0921(5)	Na(1)-O(3)'	2.4202(42)
Pb(1)-Br(2)#4	3.0644(5)	Na(1)-O(4)	2.4438(42)
		Na(1)-O(4)'	2.4438(42)
		Na(1)-O(5)	2.3270(45)
		Na(1)-O(5)'	2.3270(45)

Table S2: Selected bond lengths (Å) for **1** in LTP at 100 K

#1 = x+1/2, -y+3/2, -z+3/2; #2 = x, -y+3/2, z; #3 = x+1/2, y, -z+3/2; #4 = x+1/2, -y+3/2, -z+3/2

Table S3: Selected bond lengths (Å) for 1 in LTP at 150 K

Bond	Bond lengths / Å	Bond	Bond lengths / Å
Na(1)-Br(2)	2.9251(20)	Na(1)-O(1)	2.3887(48)
Pb(1)-Br(1)	2.9689(3)	Na(1)-O(1)'	2.3887(48)
Pb(1)-Br(1)#1	3.0577(3)	Na(1)-O(2)	2.4149(58)
Pb(1)-Br(1)#2	3.0577(3)	Na(1)-O(2)'	2.4149(58)
Pb(1)-Br(1)#3	2.9689(3)	Na(1)-O(3)	2.4140(42)
Pb(1)-Br(2)	3.0950(6)	Na(1)-O(3)'	2.4140(42)
Pb(1)-Br(2)#4	3.0681(6)	Na(1)-O(4)	2.4389(50)
		Na(1)-O(4)'	2.4389(50)
		Na(1)-O(5)	2.3298(48)
		Na(1)-O(5)'	2.3298(48)

Symmetry transformations used to generate equivalent atoms:

Bond	Bond lengths / Å	Bond	Bond lengths / Å
Na(1)-Br(2)	2.9311(20)	Na(1)-O(1)	2.3992(55)
Pb(1)-Br(1)	2.9718(3)	Na(1)-O(1)'	2.3992(55)
Pb(1)-Br(1)#1	3.0587(3)	Na(1)-O(2)	2.4099(62)
Pb(1)-Br(1)#2	2.9718(3)	Na(1)-O(2)'	2.4099(62)
Pb(1)-Br(1)#3	3.0587(3)	Na(1)-O(3)	2.4080(42)
Pb(1)-Br(2)	3.0961(6)	Na(1)-O(3)'	2.4080(42)
Pb(1)-Br(2)#4	3.0743(6)	Na(1)-O(4)	2.4477(57)
		Na(1)-O(4)'	2.4477(57)
		Na(1)-O(5)	2.3331(48)
		Na(1)-O(5)'	2.3331(48)

Table S4: Selected bond lengths (Å) for **1** in LTP at 200 K

#1 = x+1/2, -y+3/2, -z+3/2; #2 = x, -y+3/2, z; #3 = x+1/2, y, -z+3/2; #4 = x+1/2, -y+3/2, -z+3/2

Table S5: Selected bond lengths (Å) for 1 in LTP at 250 K

Bond	Bond lengths / Å	Bond	Bond lengths / Å
Na(1)-Br(2)	2.9322(21)	Na(1)-O(1)	2.3953(63)
Pb(1)-Br(1)	2.9750(4)	Na(1)-O(1)'	2.3953(63)
Pb(1)-Br(1)#1	3.0594(4)	Na(1)-O(2)	2.4132(67)
Pb(1)-Br(1)#2	2.9750(4)	Na(1)-O(2)'	2.4132(67)
Pb(1)-Br(1)#3	3.0594(4)	Na(1)-O(3)	2.3924(56)
Pb(1)-Br(2)	3.0937(6)	Na(1)-O(3)'	2.3924(56)
Pb(1)-Br(2)#4	3.0838(6)	Na(1)-O(4)	2.4331(57)
		Na(1)-O(4)'	2.4331(57)
		Na(1)-O(5)	2.3452(59)
		Na(1)-O(5)'	2.3452(59)

Symmetry transformations used to generate equivalent atoms:

Bond	Bond lengths / Å	Bond	Bond lengths / Å
Na(1)-Br(2)	2.9356(24)	Na(1)-O(1)	2.3982(78)
Pb(1)-Br(1)	2.9794(5)	Na(1)-O(1)'	2.3982(78)
Pb(1)-Br(1)#1	3.0595(5)	Na(1)-O(2)	2.4132(79)
Pb(1)-Br(1)#2	2.9794(5)	Na(1)-O(2)'	2.4132(79)
Pb(1)-Br(1)#3	3.0595(5)	Na(1)-O(3)	2.4029(70)
Pb(1)-Br(2)	3.0865(7)	Na(1)-O(3)'	2.4029(70)
Pb(1)-Br(2)#4	3.1001(7)	Na(1)-O(4)	2.4317(68)
		Na(1)-O(4)'	2.4317(68)
		Na(1)-O(5)	2.3514(67)
		Na(1)-O(5)'	2.3514(67)

Table S6: Selected bond lengths (Å) for **1** in LTP at 290 K

#1 = x+1/2, -y+3/2, -z+3/2; #2 = x, -y+3/2, z; #3 = x+1/2, y, -z+3/2; #4 = x+1/2, -y+3/2, -z+3/2

Table S7: Selected bond lengths (Å) for 1 in HTP at 305 K

Bond	Bond lengths / Å	Bond	Bond lengths / Å
Na(1)-Br(2)	2.9434(26)	Na(1)-O(1)	2.4093(78)
Pb(1)-Br(1)	2.9848(5)	Na(1)-O(1)'	2.4093(78)
Pb(1)-Br(1)#1	3.0635(5)	Na(1)-O(2)	2.3977(95)
Pb(1)-Br(1)#2	2.9848(5)	Na(1)-O(2)'	2.3977(95)
Pb(1)-Br(1)#3	3.0635(5)	Na(1)-O(3)	2.3805(70)
Pb(1)-Br(2)	3.0830(7)	Na(1)-O(3)'	2.3805(70)
Pb(1)-Br(2)#4	3.1145(7)	Na(1)-O(4)	2.4270(75)
		Na(1)-O(4)'	2.4270(75)
		Na(1)-O(5)	2.3726(78)
		Na(1)-O(5)'	2.3726(78)

Symmetry transformations used to generate equivalent atoms:

Bond	Bond lengths / Å	Bond	Bond lengths / Å
Na(1)-Br(2)	2.9372(26)	Na(1)-O(1)	2.4290(79)
Pb(1)-Br(1)	2.9836(5)	Na(1)-O(1)'	2.4290(79)
Pb(1)-Br(1)#1	3.0601(5)	Na(1)-O(2)	2.4175(99)
Pb(1)-Br(1)#2	2.9836(5)	Na(1)-O(2)'	2.4175(99)
Pb(1)-Br(1)#3	3.0601(5)	Na(1)-O(3)	2.3766(70)
Pb(1)-Br(2)	3.0774(7)	Na(1)-O(3)'	2.3766(70)
Pb(1)-Br(2)#4	3.1162(7)	Na(1)-O(4)	2.4306(75)
		Na(1)-O(4)'	2.4306(75)
		Na(1)-O(5)	2.3668(78)
		Na(1)-O(5)'	2.3668(78)

Table S8: Selected bond lengths (Å) for 1 in HTP at 315 K

#1 = x+1/2, -y+3/2, -z+3/2; #2 = x, -y+3/2, z; #3 = x+1/2, y, -z+3/2; #4 = x+1/2, -y+3/2, -z+3/2

Table S9: Selected bond lengths (Å) for 1 in HTP at 330 K

Bond	Bond lengths / Å	Bond	Bond lengths / Å
Na(1)-Br(2)	2.9366(29)	Na(1)-O(1)	2.4126(94)
Pb(1)-Br(1)	2.9837(5)	Na(1)-O(1)'	2.4126(94)
Pb(1)-Br(1)#1	3.0603(5)	Na(1)-O(2)	2.3720(99)
Pb(1)-Br(1)#2	2.9837(5)	Na(1)-O(2)'	2.3720(99)
Pb(1)-Br(1)#3	3.0603(5)	Na(1)-O(3)	2.3746(84)
Pb(1)-Br(2)	3.0755(9)	Na(1)-O(3)'	2.3746(84)
Pb(1)-Br(2)#4	3.1197(9)	Na(1)-O(4)	2.4183(75)
		Na(1)-O(4)'	2.4183(75)
		Na(1)-O(5)	2.3677(78)
		Na(1)-O(5)'	2.3677(78)

Symmetry transformations used to generate equivalent atoms:

Bond	Bond lengths / Å	Bond	Bond lengths / Å
Na(1)-Br(2)	2.9402(33)	Na(1)-O(1)	2.4156(117)
Pb(1)-Br(1)	2.9886(6)	Na(1)-O(1)'	2.4156(117)
Pb(1)-Br(1)#1	3.0651(6)	Na(1)-O(2)	2.3669(116)
Pb(1)-Br(1)#2	2.9886(6)	Na(1)-O(2)'	2.3669(116)
Pb(1)-Br(1)#3	3.0651(6)	Na(1)-O(3)	2.3722(98)
Pb(1)-Br(2)	3.0793(9)	Na(1)-O(3)'	2.3722(98)
Pb(1)-Br(2)#4	3.1275(9)	Na(1)-O(4)	2.4287(92)
		Na(1)-O(4)'	2.4287(92)
		Na(1)-O(5)	2.3862(102)
		Na(1)-O(5)'	2.3862(102)

Table S10: Selected bond lengths (Å) for 1 in HTP at 350 K

Table S11: The parameters of $U_{eq}\xspace$ in 1 at 100, 150, 200, 250, 290, 305, 315, 330 and

350 K					
Temp. / K	100	150	200	250	290
Pb1	0.00985(8)	0.01465(8)	0.02015(8)	0.02640(9)	0.03232(9)
Na1	0.0132(4)	0.0183(4)	0.0243(4)	0.0317(5)	0.0399(6)
Br1	0.01526(10)	0.02132(10)	0.02824(11)	0.03615(12)	0.04353(13)
Br2	0.01506(12)	0.02226(13)	0.03029(14)	0.03947(16)	0.04769(17)
01	0.0170(10)	0.0227(11)	0.0289(12)	0.0453(15)	0.0615(19)
O2	0.0129(11)	0.0204(12)	0.0308(14)	0.0407(16)	0.055(2)
O3	0.0133(10)	0.0173(10)	0.0260(12)	0.0372(14)	0.0459(16)
O4	0.0141(10)	0.0193(10)	0.0290(12)	0.0363(13)	0.0468(16)
O5	0.0145(10)	0.0214(11)	0.0310(12)	0.0437(15)	0.0527(17)
C1	0.0166(16)	0.0227(18)	0.033(2)	0.046(3)	0.067(5)
C2	0.0214(11)	0.0287(12)	0.0413(15)	0.0529(17)	0.066(2)
C3	0.0136(14)	0.0206(16)	0.0309(19)	0.045(3)	0.061(4)
C4	0.0144(18)	0.022(2)	0.031(2)	0.043(3)	0.063(6)
C5	0.013(3)	0.013(2)	0.021(4)	0.038(5)	0.046(6)
C6	0.0124(15)	0.023(2)	0.030(2)	0.039(3)	0.050(4)
C7	0.0247(12)	0.0339(14)	0.0410(15)	0.0548(18)	0.070(2)
C8	0.0177(17)	0.029(2)	0.037(2)	0.050(3)	0.069(5)
C9	0.021(4)	0.022(4)	0.036(6)	0.043(5)	0.049(5)
C10	0.0186(19)	0.024(2)	0.041(3)	0.056(5)	0.073(7)

Temp. / K	305	315	330	350
Pb1	0.03511(10)	0.03693(10)	0.03961(11)	0.04339(13)
Na1	0.0431(6)	0.0461(6)	0.0503(7)	0.0550(8)
Br1	0.04702(14)	0.04933(14)	0.05283(17)	0.05791(19)
Br2	0.05152(18)	0.05392(18)	0.0574(2)	0.0629(3)
01	0.068(2)	0.072(2)	0.086(3)	0.100(4)
02	0.067(2)	0.074(3)	0.079(3)	0.093(4)
O3	0.0558(19)	0.0605(19)	0.066(2)	0.072(3)
O4	0.0517(17)	0.0548(17)	0.061(2)	0.071(3)
05	0.0571(19)	0.0596(19)	0.068(2)	0.077(3)
C1	0.087(6)	0.134(11)	0.093(6)	0.113(8)
C2	0.074(2)	0.079(2)	0.086(3)	0.097(4)
C3	0.061(4)	0.079(7)	0.077(4)	0.087(5)
C4	0.069(6)	0.069(4)	0.074(4)	0.089(6)
C5	0.049(7)	0.080(11)	0.088(8)	0.087(9)
C6	0.058(4)	0.056(4)	0.063(4)	0.068(4)
C7	0.083(3)	0.088(3)	0.092(3)	0.104(4)
C8	0.072(5)	0.077(6)	0.087(5)	0.091(6)
С9	0.108(13)	0.085(13)	0.061(5)	0.081(8)
C10	0.076(8)	0.074(6)	0.086(6)	0.095(7)

To Continue Table S11