Supporting Information

A New Multi-Functional Cu(II)-Organic Framework as a Platform

for Selective Carbon Dioxide Chemical Fixation and Separation of

Organic Dyes

Yang-Tian Yan,*^a Chen-Yang Wang, ^a Li-Na Zheng, ^a Yun-long Wu, ^a Jiao Liu, ^b Wei-Ping Wu, ^c Wen-Yan Zhang ^b and Yao-Yu Wang ^b

^a School of Materials Science & Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China.

^b Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, and, School of Chemical Engineering, Northwest University, Xi'an 710127, P. R. China.

^c College of Chemistry and Environmental Engineering and Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, Sichuan University of Science and Engineering, Zigong 643000, P. R. China.

Complex 1			
Cu(1)-O(2)#2	1.959(3)	O(2)#1-Cu(1)-Cu(1)#1	83.66(14)
Cu(1)-O(2)#1	1.959(3)	O(2)#1-Cu(1)-O(2)#2	89.44(18)
Cu(1)-O(1)	1.962(3)	O(2)#1-Cu(1)-O(1)#3	90.21(14)
Cu(1)-O(1)#3	1.962(3)	O(2)#2-Cu(1)-O(1)	90.21(14)
Cu(1)-O(5)	2.146(8)	O(2)#1-Cu(1)-O(1)	168.22(18)
Cu(1)-O(2)#2	1.959(3)	O(2)#2-Cu(1)-O(1)#3	168.22(18)
O(2)#2-Cu(1)-Cu(1)#1	83.66(14)	O(2)#2-Cu(1)-O(5)	95.3(2)
O(2)#1-Cu(1)-O(5)	95.3(2)	O(1)#3-Cu(1)-O(5)	96.5(2)
O(1)#3-Cu(1)-Cu(1)#1	84.60(14)	O(5)-Cu(1)-Cu(1)#1	178.5(2)
O(1)-Cu(1)-Cu(1)#1	84.60(14)	O(1)-Cu(1)-O(1)#3	87.7(2)
O(1)-Cu(1)-O(5)	96.5(2)		

 Table S1. Selected bond lengths (Å) and bond angles (°) for 1

Symmetrical codes: #1 -x+1/2, -y+3/2, -z+1/2; #2 -x+1/2, y, -z+1/2; #3 x, -y+3/2, z; #4 -y+5/4, -x+5/4, -z+3/4.

Fig. S1. PXRD patterns of 1 simulated from the X-ray single-crystal structure, experimental samples and desolvated samples (1a).

Fig. S2. TGA plots of complex 1 and 1a.

IAST adsorption selectivity calculation

The experimental isotherm data for pure CO_2 and CH_4 (measured at 273 and 298 K) were fitted using a Langmuir-Freundlich (L-F) model

$$q = \frac{a * b * p^c}{1 + b * p^c}$$

Where q and p are adsorbed amounts and pressures of component *i*, respectively. The adsorption selectivities for binary mixtures of CO₂/CH₄ at 273 and 298 K and CO₂/N₂ at 298 K., defined by

Where *qi* is the amount of *i* adsorbed and *pi* is the partial pressure of *i* in the mixture.

Fig. S3. CO₂ adsorption isotherms of **1a** at 273K with fitting by L-F model: a = 15.652, b = 0.0071, c = 0.6510, Chi² = 1.75 ×10⁻⁴, R² = 0.99951; CO₂ adsorption isotherms of **1a** at 298K with fitting by L-F model: a = 4.0308, b = 0.0076, c = 0.8568, Chi² = 6.18 ×10⁻⁶, R² = 0.99995; CH₄ adsorption isotherms of **1a** at 273K with fitting by L-F model: a = 2.04506, $b = 9.47 \times 10^{-4}$, c = 1.18421, Chi² = 2.24 ×10⁻⁵, R² = 0.99856; CH₄ adsorption isotherms of **1a** at 298K with fitting by L-F model: a = 4.18026, b = 5.7768, c = 0.95923, Chi² = 3.24 ×10⁻⁶, R² = 0.99918.

Calculation of sorption heat for CO₂ uptake using Virial 2 model

$$\ln P = \ln N + 1/T \sum_{i=0}^{m} aiN^{i} + \sum_{i=0}^{n} biN^{i} \quad Q_{st} = -R \sum_{i=0}^{m} aiN^{i}$$

The above equation was applied to fit the combined CO_2 isotherm data for desolvated **1a** at 273 and 298 K, where *P* is the pressure, *N* is the adsorbed amount, *T* is the temperature, *ai* and *bi* are virial coefficients, and *m* and *n* are the number of coefficients used to describe the isotherms. Q_{st} is the coverage-dependent enthalpy of adsorption and *R* is the universal gas constant.

Fig. S4. Virial analysis of the CO₂ adsorption data at 273 and 298 K for 1a. Fitting results: a0 = -3989.33, a1 = -32.37, a2 = 8.24, a3 = -0.24, a4 = 0.0014, Chi^A2 = 0.00064, R^A2 = 0.9997.

Fig. S5. Color differences of the H_2O solutions with complex 1 in various dyes.

Fig. S6. The FT-IR spectra of complex 1.