Supporting Information

Experimental and Theoretical Studies of a Pyridylvinyl(benzoate) Based Coordination Polymer Structure

Yuri Dezotti,^a Manoel Victor Frutuoso Barrionuevo,^a Ingrid Fernandes Silva,^b Marcos Antônio Ribeiro,^c Rafael Añez,^d Humberto Osório Stumpf,^b Miguel Angel San-Miguel,^a* Wdeson Pereira Barros^a*

^aInstituto de Química, Universidade Estadual de Campinas, SP 13083-970, Brazil

^bDepartamento de Química, ICEx, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil

[°]Departamento de Química, Universidade Federal do Espírito Santo, Vitória, ES 29075-910, Brazil.

^dLaboratorio de Química Física y Catálisis Computacional, Centro de Química, Instituto Venezolano de Investigaciones Científicas, Caracas 21827, Venezuela.

Figure S1. ¹H NMR spectrum in dmso-d₆ for the **3,4-Hpvb**.

Figure S2. ¹³C NMR spectrum in dmso-d₆ for the **3,4-Hpvb**.

Figure S3. FT-IR (ATR) spectrum for the 3,4-Hpvb.

Figure S4. FT-IR (ATR) spectrum for compound 1.

Figure S5. Experimental and calculated PXRD pattern for compound **1**. Some (hkl) reflection indexes from the calculated PXRD pattern are shown for comparison.

Figure S6. Electronic spectra obtained by the DRS method for the **3,4-Hpvb** pre-ligand (black line), with λ_{max} around 280, 350, and 440 nm, characteristic of intra-ligand transitions, and for compound **1** (blue line), with λ_{max} around 580 and 700 nm, characteristic of d-d transitions.

Coordination	SHAPE	Reference Polyhedra	Symmetry	CShM value ^a
number	label			
4	SP-4	Square	D _{4h}	0.06008
	T4	Tetrahedron	T_d	33.37338
	SS-4	Seesaw	C_{2v}	18.41743
	vTBPY-4	Axially vacant trigonal bipyramid	C_{3v}	34.59204
6	HP-6	Hexagon	D_{6h}	22.64759
	PPY-6	Pentagonal pyramid	C_{5v}	26.43905
	OC-6	Octahedron	O_h	8.57224
	TPR-6	Trigonal prism	D_{3h}	19.43249
	JPPY-6	Johnson pentagonal pyramid (J2)	C_{5v}	26.92323

 Table S1. Continuous Shape Measures (CShM) analysis for compound 1.

^{*a*} The smallest value indicates proximity between the actual coordination sphere and the idealized polyhedron.

Figure S7. Angle between the **3,4-pvb**⁻ mean-plane and the carboxylate mean-plane. Pink plane: C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 N1 O1 O2 C1; Rms of fitted atoms: 0.1015. Green plane: O1 O2 C1; Rms of fitted atoms: 0.0.

Figure S8. Angle between the **3,4-pvb**⁻ mean-plane and the copper(II) basal plane. a) Green plane: O2 O2ⁱⁱⁱ N1ⁱ N1ⁱⁱ; Rms of fitted atoms: 0.0. Pink plane: C2ⁱ C3ⁱ C4ⁱ C5ⁱ C6ⁱ C7ⁱ C8ⁱ C9ⁱ C10ⁱ C11ⁱ C12ⁱ C13ⁱ C14ⁱ N1ⁱ O1ⁱ O2ⁱ C1ⁱ; Rms of fitted atoms: 0.1015. b) Green plane: O2 O2ⁱⁱⁱ N1ⁱ N1ⁱⁱ; Rms of fitted atoms: 0.0. Pink plane: C2ⁱⁱⁱ C3ⁱⁱⁱ C4ⁱⁱⁱ C5ⁱⁱⁱ C6ⁱⁱⁱ C7ⁱⁱⁱ C8ⁱⁱⁱ C9ⁱⁱⁱ C10ⁱⁱⁱ C11ⁱⁱⁱ C12ⁱⁱⁱ C13ⁱⁱⁱ C14ⁱⁱⁱ N1ⁱⁱⁱ O1ⁱⁱⁱ O2ⁱⁱⁱⁱ C1ⁱⁱⁱ; Rms of fitted atoms: 0.1015.

Figure S9. Simplified molecular structure of $\{[Cu(3,4-pvb)_2]\cdot 4(dmf)\}_n$ showing a) arrangement between the 4-connected metal nodes and the **3,4-pvb**⁻ bridges in one corrugated layer; (b) overall three-dimensional supramolecular structure of $\{[Cu(3,4-pvb)_2]\cdot 4(dmf)\}_n$ with the parallel stacking of the corrugated layers. Solvent molecules are not shown for clarity purposes.

Figure S10. Intermolecular interactions between dmf molecules and the **3,4-pvb**⁻ moieties (view along the *a*-axis).

Figure S11. Intermolecular interactions between dmf molecules and the 3,4-pvb⁻ moieties.

Figure S12. Intermolecular interactions between dmf molecules across one rhombus channel (only dmf molecules are shown for the sake of clarity).

Figure S13. N_2 adsorption-desorption isotherm pattern for 1. Insert: Pore size distribution calculated from the N_2 adsorption-desorption isotherm by the BJH method.

Figure S14. NCI isosurface (0.3 bohr) representation for the first domain.

Figure S15. NCI isosurface (0.3 bohr) representation for the second domain.

Figure S16. NCI isosurface (0.3 bohr) representation for the third domain.

Figure S18. NCI isosurface (0.3 bohr) representation for the fifth domain.

Figure S17. NCI isosurface (0.3 bohr) representation for the fourth domain.

Figure S19. Isosurface volume for the central cavity pore highlighted for clarity.

Figure S20. PDOS for *s*, *p* and *d* states for each atomic specie.

Figure S21 PDOS for *d*-states of copper(II) upon coordination with 4 ligands of **3,4-pvb**⁻.