Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2021

Supporting information

Constructing oxygen vacancy-enriched Fe₂O₃@NiO heterojunctions for

highly efficient electrocatalytic alkaline water splitting

Yan Sang*, Xi Cao, Gaofei Ding, Zixuan Guo, Yingying Xue, Guohong Li, Runhan

Yu

College of Chemistry and Materials Science, the Key Laboratory of Functional

Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based

Materials, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher

Education Institutes, Anhui Normal University, Wuhu, 241002, P. R. China

Fig. S1. (a, b) SEM images of pure NiO at low and high magnification. (c, d) SEM images of pure Fe₂O₃ at low and high magnification.

Fig. S2. (a) TEM image of pure NiO. (b) TEM image of pure Fe_2O_3 .

Fig. S3. SEM image after the electrochemical performance testing.

Fig. S4. EDX spectrum of Fe₂O₃@NiO.

Fig. S5. Elements XPS survey.

Fig. S6. The collected EPR spectra of Fe₂O₃@NiO heterojunction.

Fig. S7. CV curves for OER in 1 M KOH at the scan rate of 10, 20, 40, 60, 80 and 100 mV/s: (a) Fe₂O₃@NiO, (b) Fe₂O₃, (c) NiO, and (d) NF.

Element	Weight %	Atomic %	Uncert. %	Detector Correction	k-Factor
O(K)	44.96	74.34	1.46	0.49	1.990
Fe(K)	37.08	17.56	0.96	0.99	1.382
Ni(K)	17.94	8.08	0.74	0.99	1.484

Table S1 Quantitative analysis of EDX elements.

Table S2 Comparison of the overpotential of Fe2O3@NiO in 1.0 M KOH with otheriron- and nickel-based bifunctional catalysts.

	Electrolyte	j=10mA cm ⁻ ² (mV)		Tafel (mV dec ⁻ 1)		Overall	
Catalysts		OER	HER	OER	HER	water Splitting (V)	Ref.
Fe ₂ O ₃ @NiO	1.0 M KOH	224	187	20.0	53.8	1.63	This Work
Ni _{0.9} Fe _{0.1} /NC	1.0 M KOH	330	231	45	111	1.58	1
CoFe LDH-F	1.0 M KOH	300	255	40	95	1.63	2
NiFe/NiCo ₂ O ₄ /NF	1.0 M KOH	260	110	38.8	88	1.67	3
NiCo ₂ S ₄ NW	1.0 M KOH	260	210	40.1	58.9	1.63	4
Co-Fe oxyphosphide	1.0 M KOH	280	180	53	62	1.69	5
NiFe HNSs	1.0 M KOH	220	189	40.7	87.2	1.67	6
NiCoFe ALDHs/CFC	1.0 M KOH	239	200	32	70	1.55	7

CoFe LDH nanosheets	1.0 M KOH	260	166	40	95	1.63	8
Fe/Co–N–C	1.0 M KOH	340	270	61	83	\	9

 Table S3 The ratio of Fe and O before and after test in XPS.

Before and		Fe 2p	O 1s		
after test	Fe ²⁺ (%)	Fe ³⁺ (%)	$Fe^{2+}(\%)/Fe^{3+}(\%)$	O1 (%)	O2 (%)
Before test	37.2	62.8	59.3	41.9	58.1
After test	30.8	69.2	44.5	64.1	35.9

References

[1] X. Zhang, H. Xu, X. Li, Y. Li, T. Yang and Y. Liang, ACS Catal., 2016, 6, 580–588.

[2] P. F. Liu, S. Yang, B. Zhang and H. G. Yang, ACS Appl. Mater. Interfaces, 2016, 8, 34474–34481,

[3] C. Xiao, Y. Li, X. Lu and C. Zhao, Adv. Funct. Mater., 2016, 26, 3515–3523.

[4] A. Sivanantham, P. Ganesan and S. Shanmugam, *Adv. Funct. Mater.*, 2016, 26, 4661–4672.

[5] P. Zhang, X. F. Lu, J. Nai, S. Q. Zang and X. W. Lou, Adv. Sci., 2019, 6, 1900576.

[6] X. Sun, Q. Shao, Y. Pi, J. Guo and X. Huang, J. Mater. Chem. A, 2017, 5, 7769.

[7] A. L. Wang, H. Xu and G. R. Li, ACS Energy Lett., 2016, 1, 445-453.

[8] P. F. Liu, S Yang., B. Zhang and H. G. Yang, ACS Appl. Mater. Interfaces, 2016, 8, 34474-34481.

[9] J. Yang, X. Wang, B. Li, L. Ma, L. Shi, Y. Xiong and H. Xu, Adv. Funct. Mater., 2017, 27, 1606497.