Supporting Information

Assembly of a rod indium-organic framework with fluorescence property for selective sensing of Cu²⁺, Fe³⁺ and nitroaromatics in water

Hao Zhang, Zi-Jun Ding, Yu-Hui Luo,* Wu-Yue Geng, Zhi-Xuan Wang, Dong-En Zhang*

School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222000, P. R. China.

* Corresponding authors. E-mail: luoyh@jou.edu.cn (Yu-Hui Luo); 2007000040@jou.edu.cn (Dong-En Zhang)

Materials and Measurements

All reagents and solvents were purchased from commercial sources and used without purification. TCA was prepared according to the literature¹. Powder X-ray diffraction (PXRD) patterns was collected on a PANalytical X'Pert Powder X-ray diffractometer with graphite monochromatized Cu $K\alpha$ radiation ($\lambda = 0.15418$ nm), 2θ ranging from 5 to 50 ° with an increment of 0.02 °, and a scanning rate of 10 °/min. The FT-IR spectra was measured by using KBr pellets in the range 4000 - 500 cm⁻¹ on a Thermo Scientific spectrometer. The UV-Vis absorption was measured with a PERSEE UV-Vis-NIR spectrophotometer. The fluorescent spectroscopy was measured on a FL-7000 HITACHI luminescence spectrometer at room temperature with a light source of Xenon lamp.

X-ray crystallography

Crystallographic diffraction data for JOU-25 was recorded on a Bruker Apex CCD diffractometer with graphite monochromatized Mo-Ka radiation ($\lambda = 0.71073$ Å) at room temperature. JOU-25 was solved by Direct Method of SHELXS-2018 and refined by full-matrix least-squares technique by using the SHELXL-2018 program². All nonhydrogen atoms were refined with anisotropic temperature parameters. All hydrogen atoms were placed in geometrically idealized position as a riding mode. The solvent molecules in the crystal are highly disordered and are removed by using the SQUEEZE routine of PLATON³. For JOU-25-R, SADI, DFIX, SIMU, ISOR and FLAT commands were used to restrict some of the atoms and bond length, whereas AFIX 66 was used to restrict the geometry of benzene ring of the ligand. For JOU-25-S, DFIX, SIMU and ISOR commands were used to restrict some of the atoms and bond length, whereas AFIX 66 was used to restrict the geometry of benzene ring of the ligand. For both JOU-25-R and JOU-25-S, PLAT420 ALERT 2 B may be due to the following reasons. The solvent molecules may be the acceptors of this O-H bonds, but the solvent molecules are highly disordered and removed using the SQUEEZE routine of PLATON. For JOU-25-S, although the crystallographic data have been recorded twice and Twin/BASF commands have been added, a relative high flack value was obtained, resulting in PLAT987 ALERT_1_B. PLAT342_ALERT_3_B may be due to the bad quality of the crystal. The crystallographic data for JOU-25 was summarized in Table S1, and the selected bond lengths and angles are listed in Table S2 and S3. CCDC numbers for JOU-25-R and JOU-25-S are 2103362 and 2103363, respectively.

Compounds	JOU-25-R	JOU-25-S
Formula	C ₈₇ H ₆₄ In ₅ N ₅ O ₃₁	C ₈₇ H ₆₄ In ₅ N ₅ O ₃₁
Formula weight	2249.53	2249.53
Crystal system	hexagonal	hexagonal
Space group	$P6_1$	$P6_5$
<i>a</i> (Å)	37.5060(8)	37.662(5)
<i>b</i> (Å)	37.5060(8)	37.662(5)
<i>c</i> (Å)	16.9308(7)	17.189(2)

Table S1. Crystallographic data and structure refinements of JOU-25.

α (°)	90	90
β (°)	90	90
γ (°)	120	120
$V(Å^3)$	20625.7(12)	21115(6)
Z	6	6
Density (g cm ⁻³)	1.087	1.061
μ / mm^{-1}	0.881	0.861
F(000)	6384	6684
2θ (°)	4.466 - 50.485	4.901 - 50.565
Reflections	273224	115846
Data/restraints/parameters	31574/1305/1076	24522/2797/1052
GOF on F ²	1.040	1.049
$R_1, wR_2 [I > 2\sigma (I)]$	0.0322, 0.0831	0.0891, 0.2265
R_1 , wR_2 (all data)	0.0397, 0.0914	0.1159, 0.2602
$a\mathbf{D} = \mathbf{\Sigma} \mathbf{E} = \mathbf{E}_{\mathbf{c}} /\mathbf{\Sigma} \mathbf{E} _{\mathbf{c}} \cdot \mathbf{D}$	$-\Sigma [\omega (E^2 - E^2)^2] / \Sigma [\omega$	$(E^{2})^{211/2}$

 ${}^{a}R_{1} = \sum ||F_{0}| - |Fc|| / \sum |F_{0}|; \ wR_{2} = \sum [w(F_{0}^{2} - Fc^{2})^{2}] / \sum [w(F_{0}^{2})^{2}]^{1/2}.$

Table S2. Selected bond lengths (Å) and angels (°) for JOU-25-R.

	0 ()	0 ()	
$In_1 - O_{12}^2$	2.131(7)	In ₁ -O ₂₅	2.116(5)
$In_1 - O_{28}^{1}$	2.125(5)	$In_1 - O_3^3$	2.145(7)
$In_1 - O_{10}^3$	2.178(6)	In_1-O_1	2.188(6)
In ₂ -O ₂₅	2.086(6)	In_2-O_{26}	2.07(6)
In_2-O_2	2.082(6)	In_2-O_{14}	2.15(6)
$In_2-O_4^3$	2.152(7)	In_2-O_7	2.2(6)
In ₃ -O ₂₆	2.125(6)	In ₃ -O ₂₇	2.115(6)
In ₃ -O ₈	2.115(7)	$In_3-O_5^3$	2.136(6)
In ₃ -O ₂₀	2.158(6)	In ₃ -O ₁₃	2.16 (6)
In ₄ -O ₂₇	2.068(5)	In ₄ -O ₂₈	2.101(5)
$In_4-O_9^3$	2.136(6)	In ₄ -O ₁₉	2.152(5)
$In_4-O_{11}^{1}$	2.170(6)	$In_4-O_6^3$	2.17(6)
In ₅ -O ₂₉	2.096(6)	$In_{5}-O_{21}^{3}$	2.163(6)
In_5-O_{15}	2.148(6)	In ₅ -O ₂₂	2.145(6)
$In_{5}-O_{16}^{3}$	2.173(6)	$In_{5}-O_{29}^{3}$	2.09(7)
O_{12}^{1} -In ₁ - O_{25}	91.9(6)	O_{12}^{1} -In ₁ - O_{28}^{2}	93.1(6)
O_{25} -In ₁ - O_{28}^2	90.3(4)	O_{12}^{1} -In ₁ - O_{3}^{3}	172.3(6)
O_{25} -In ₁ - O_3^3	93.2(6)	O_{28}^2 -In ₁ - O_3^3	92.7(5)
O_{12}^{1} -In ₁ - O_{10}^{3}	87.4(7)	O_{25} - In_1 - O_{10}^3	175.9(5)
O_{28} - In_1 - O_{10}^3	93.8(5)	O_3^3 -In ₁ - O_{10}^3	87.1(7)
O_{12}^{1} -In ₁ - O_{1}	86.2(7)	O_{25} -In ₁ - O_1	93.4(5)
O_{28}^2 -In ₁ -O ₁	176.2(5)	O_{33} -In ₁ - O_1	87.7(7)
O_{10}^{3} -In ₁ -O ₁	82.5(5)	O ₂₅ -In ₂ -O ₂₆	97.2(5)
O_{25} - In_2 - O_2	87.3(6)	O_{26} -In ₂ - O_2	172.5(7)
O ₂₅ -In ₂ -O ₁₄	97.4(5)	O ₂₆ -In ₂ -O ₁₄	89.7(5)
O_2 -In ₂ - O_{14}	83.7(7)	O_{25} - In_2 - O_4 ³	93.4(6)
O_{26} -In ₂ - O_4^3	93.4(7)	O_2 - In_2 - O_4 ³	92.3(8)

O_{14} - In_2 - O_4^3	168.3(7)	O_{25} -In ₂ - O_7	168.8(5)
O_{26} -In ₂ - O_7	92.5(5)	O_2 -In ₂ - O_7	83.6(6)
O_{14} - In_2 - O_7	88.2(6)	O_4^3 -In ₂ - O_7	80.4(6)
O ₂₆ -In ₃ -O ₂₇	88.4(5)	O ₂₆ -In ₃ -O ₈	91(6)
O ₂₇ -In ₃ -O ₈	91.9(6)	O_{26} -In ₃ - O_5^3	91(7)
O_{27} -In ₃ - O_5^5	90.2(6)	O_8 -In ₃ - O_5^3	177.1(7)
O ₂₆ -In ₃ -O ₂₀	176(6)	O ₂₇ -In ₃ -O ₂₀	92(5)
O ₈ -In ₃ -O ₂₀	85(6)	O_5^3 -In ₃ -O ₂₀	93(7)
O ₂₆ -In ₃ -O ₁₃	93(5)	O ₂₇ -In ₃ -O ₁₃	174.5(5)
O ₈ -In ₃ -O ₁₃	93.3(7)	O_5^3 -In ₃ -O ₁₃	84.5(6)
O ₂₀ -In ₃ -O ₁₃	86.9(5)	O ₂₇ -In ₄ -O ₂₈	96.1(5)
O_{27} -In ₄ - O_9^3	174.2(6)	O_{28} -In ₄ - O_{9}^{3}	87.6(6)
O ₂₇ -In ₄ -O ₁₉	90.7(5)	O ₂₈ -In ₄ -O ₁₉	98.4(5)
O_9^3 -In ₄ - O_{19}	84.4(6)	O_{27} -In ₄ - O_{11}^2	94.9(7)
O_{28} -In ₄ - O_{11}^2	93.5(6)	O_9^3 -In ₄ - O_{11}^2	89.3(8)
O_{19} -In ₄ - O_{11}^2	166.3(7)	O_{27} -In ₄ - O_6^3	92 (5)
O_{28} -In ₄ - O_6^3	170.1(5)	O_9^3 -In ₄ - O_6^3	84.8(6)
O_{19} -In ₄ - O_6^3	87.2(6)	O_{11}^2 -In ₄ - O_6^3	80.1(6)
O_{29} -In ₅ - O_{29}^{3}	90.6(5)	O_{29} -In ₅ - O_{21}^3	96.8(7)
O_{29}^{3} -In ₅ - O_{21}^{3}	92.8(7)	O ₂₉ -In ₅ -O ₁₅	171.3(8)
O_{29}^{3} -In ₅ - O_{15}	92.1(7)	O_{21}^{3} -In ₅ - O_{15}	91.3(8)
O ₂₉ -In ₅ -O ₂₂	90.9(7)	O_{29}^{3} -In ₅ - O_{22}	172.4(8)
O_{21}^{3} -In ₅ - O_{22}	79.6(9)	O ₁₅ -In ₅ -O ₂₂	87.5(8)
O_{29} -In ₅ - O_{16}^{3}	88.3(7)	O_{29}^2 -In ₅ - O_{16}^3	94.2(7)
O_{21}^2 -In ₅ - O_{16}^3	171.3(9)	O_{15} -In ₅ - O_{16}^{3}	83.2(9)

Symmetry transformations: 1 1+ x, + y, -1 + z; 2 2 - x, 1 - y, -1/2 + z; 3 1 - y, + x - y, 1/3 + z.

Table S3. Selected bond lengths (Å) and angels (°) for JOU-25-S.

	ieetea oona ienguib (i i) t			
In ₁ -O ₂₆	2.07(2)	In ₁ -O ₁₃	2.09(3)	
$In_1-O_{17}^{-1}$	2.11(3)	In_1-O_2	2.13(3)	
In_1-O_{20}	2.13(3)	In ₁ -O ₂₅	2.17(3)	
In ₂ -O ₁₉	2.08(3)	In ₂ -O ₂₇	2.13(3)	
In ₂ -O ₂₆	2.15(3)	In_2-O_1	2.15(3)	
In ₂ -O ₈	2.18(3)	$In_2-O_{16}^2$	2.18(3)	
$In_3 - O_{28}^3$	2.04(3)	$In_3-O_{24}^2$	2.08(3)	
In ₃ -O ₂₇	2.08(3)	In_3-O_7	2.12(3)	
$In_3-O_{21}^3$	2.16(3)	$In_3-O_{15}^2$	2.21(3)	
$In_4-O_{18}^{11}$	2.1(3)	$In_4-O_{23}^2$	2.1(3)	
In ₄ -O ₂₅	2.14(3)	In_4-O_{28}	2.14(3)	
In_4-O_{14}	2.15(3)	$In_4-O_{22}^3$	2.15(3)	
$In_5 - O_{29}^2$	2.06(3)	$In_{5}-O_{10}^{2}$	2.11(2)	
In ₅ -O ₂₉	2.14(3)	$In_5-O_6^3$	2.16(3)	
In ₅ -O ₉	2.17(3)	In ₅ -O ₅	2.19(3)	

O ₂₆ -In ₁ -O ₁₃	177.1(12)	O_{26} -In ₁ - O_{17} ¹	92.4(12)
O_{13} -In ₁ - O_{17} ¹	90.3(12)	O_{26} -In ₁ - O_2	91.6(11)
O_{13} - In_1 - O_2	85.9(11)	O_{17}^{1} -In ₁ - O_{2}	169.4(13)
O ₂₆ -In ₁ -O ₂₀	94.6(11)	O_{13} -In ₁ - O_{20}	86.6(11)
O_{17}^1 -In ₁ - O_{20}	83(12)	O_2 -In ₁ - O_{20}	86.9(12)
O ₂₆ -In ₁ -O ₂₅	94.3(11)	O_{13} -In ₁ - O_{25}	84.7(11)
O_{17}^{1} -In ₁ - O_{25}	92(12)	O_2 -In ₁ - O_{25}	97.5(12)
O ₂₀ -In ₁ -O ₂₅	170(11)	O ₁₉ -In ₂ -O ₂₇	91(11)
O ₁₉ -In ₂ -O ₂₆	91(11)	O ₂₇ -In ₂ -O ₂₆	91.8(9)
O_{19} -In ₂ - O_1	91.2(12)	O_{27} -In ₂ - O_1	176.2(12)
O ₂₆ -In ₂ -O ₁₄	83.7(7)	O_{25} -In ₂ - O_4^3	93.4(6)
O_{26} -In ₂ - O_1	91.2(11)	O_{19} -In ₂ - O_8	85.7(12)
O ₂₇ -In ₂ -O ₈	92.5(11)	O_{26} -In ₂ - O_8	174.6(10)
O_1 -In ₂ - O_8	84.6(10)	O_{19} -In ₂ - O_{16}^2	178.2(13)
O_{27} -In ₂ - O_{16}^2	90.8(12)	O_{26} -In ₂ - O_{16}^2	88.7(11)
O_1 -In ₂ - O_{16}^2	87(12)	O_8 -In ₂ - O_{16}^2	94.5(12)
O_{28}^{3} -In ₃ - O_{24}^{2}	89.4(11)	O_{28}^{3} -In ₃ - O_{27}	98.9(12)
O_{24}^2 -In ₃ - O_{27}	171.2(12)	O_{28}^{3} -In ₃ -O ₇	97.8(11)
O_{24}^2 -In ₃ -O ₇	88.3(12)	O ₂₇ -In ₃ -O ₇	87.8(11)
O_{28}^{3} -In ₃ - O_{21}^{3}	91.5(11)	O_{24}^2 -In ₃ - O_{21}^3	89.4(12)
O_{27} -In ₃ - O_{21}^{3}	93.2(12)	$O_7 - In_3 - O_{21}^3$	170.4(13)
O_{28}^{3} -In ₃ - O_{15}^{2}	167.5(11)	O_{24}^2 -In ₃ - O_{15}^2	80.5(11)
O_{27} -In ₃ - O_{15}^2	91.6(11)	O_7 -In ₃ - O_{15}^2	89.4(12)
O_{21}^3 -In ₃ - O_{15}^2	81(12)	O_{18}^{1} -In ₄ - O_{23}^{2}	83.1(13)
O_{18}^{1} -In ₄ - O_{25}	97.3(12)	O_{23}^2 -In ₄ - O_{25}	175.6(12)
O_{18}^{1} -In ₄ - O_{28}	94.9(12)	O_{23}^2 -In ₄ - O_{28}	94.9(11)
O ₂₅ -In ₄ -O ₂₈	89.5(10)	O_{18}^{1} -In ₄ - O_{14}	86(13)
O_{23}^{3} -In ₄ - O_{14}	84.2(11)	O ₂₅ -In ₄ -O ₁₄	91.5(11)
O_{28} -In ₄ - O_{14}	178.6(12)	O_{18}^{1} -In ₄ - O_{22}^{3}	170.2(11)
O_{23}^2 -In ₄ - O_{22}^3	88.6(12)	O_{25} -In ₄ - O_{22}^{3}	90.6(12)
O_{28} -In ₄ - O_{22}^3	91(10)	O_{14} -In ₄ - O_{22}^{3}	88(11)
O_{29}^2 -In ₅ - O_{10}^2	90.2(12)	O_{29}^2 -In ₅ - O_{29}	90.8(11)
O_{10}^2 -In ₅ - O_{29}	95.3(12)	O_{29}^2 -In ₅ - O_6^3	95.8(11)
O_{10}^2 -In ₅ - O_6^3	171.2(12)	O_{29} -In ₅ - O_{6}^{3}	91 (13)
O_{29}^2 -In ₅ - O_9	170.5(12)	O_{10}^2 -In ₅ -O ₉	80.6(13)
O ₂₉ -In ₅ -O ₉	92.7(11)	O_6^3 -In ₅ -O ₉	93(12)
O_{29}^2 -In ₅ - O_5	94(12)	O_{10}^2 -In ₅ -O ₅	90.4(12)
O_{29} -In ₅ - O_5	172.5(12)	O_6^3 -In ₅ -O ₅	82.8(12)

Symmetry transformations: 1 + y - x; 1 - x, 1/3 + z; 2 - y + x, +x, -1/6 + z; 3 - x, 1 - y, 1/2 + z.

Fig. S1. (a) Outer diameter and inner diameter of **H2** along c axis. (b) The helical distance and angle of **H2** monomer. (c) Outer diameter and inner diameter of **H4** along c axis. (d) The helical distance and angle of **H4** monomer.

Fig. S2. (a) The structure of small pore along c axis. (b) The structure of large pore along c axis.

Fig. S3. TG curve of JOU-25.

Fig. S4. As-synthesized PXRD pattern and simulated spectrum of JOU-25.

Fig. S5 The stability of JOU-25 in different solutions.

Fig. S6. The fluorescence spectra of JOU-25 and H_3TCA in mixed solution of DMF/ H_2O (V/V = 1:1).

Fig. S7. Emission spectra of **JOU-25** in DMF solution in the presence of different metal ions.

Fig. S8. (a) Emission spectra of JOU-25 in DMF/H₂O solution with different concentration of Cu^{2+} . (b) Emission spectra of JOU-25 in DMF/H₂O solution with different concentration of Fe³⁺.

Fig. S9. (a) The recyclability test of JOU-25 regarding Cu^{2+} detection. (b) The recyclability test of JOU-25 regarding Fe³⁺ detection. (c) The recyclability test of JOU-25 regarding NB detection. Magenta column: luminescent intensity of JOU-25 dispersion before adding detected molecules; orange column: the relative luminescent intensity after adding Cu^{2+} solution; green column: the relative luminescent intensity after adding Fe³⁺ solution; blue volume: the relative luminescent intensity after adding NB solution.

Fig. S10. (a) Stability of JOU-25 after releasing Cu^{2+}/Fe^{3+} . (b) UV-Vis absorption spectra of metal ions and emission spectra of JOU-25. (c) The solid UV-Vis absorption spectra of JOU-25, $Cu^{2+}@JOU-25$ and $Fe^{3+}@JOU-25$.

Fig. S11. Fluorescence decay curves of JOU-25, JOU-25 + Fe^{3+} and JOU-25 + Cu^{2+} .

MOFs	$K_{\rm SV}$ (M ⁻¹)	Detection limit (M ⁻¹)	Ref.
JOU-25	392867	3.82 × 10 ⁻⁷	This work
Cd(INA)(pytpy)(OH)·2H ₂ O	130000	3.05×10^{-6}	4
UiO-66-(COOH) ₂	41200	2.3 × 10-7	5
MIL-53-L	6150	-	6
$[Cd(L)_2] \cdot (DMF)_{0.92}$	4430	7 × 10 ⁻⁵	7
$[Tb_3(L)_2(HCOO)(H_2O)_5] \cdot DMF \cdot 4H_2O$	2021.8	1 × 10-6	8

Table S4 Comparison of reported MOF sensors for Cu²⁺ ion detection.

MOFs	$K_{\rm SV}$ (M ⁻¹)	Detection limit (M ⁻¹)	Ref.
Bi-TCBPE	578000	9.8 × 10 ⁻⁷	9
JOU-25	313907	3.82 × 10 ⁻⁷	This work
Eu-MOF	20280	4 × 10 ⁻⁵	10
Tb-MOF	16590	-	11
UiO-66-NDC	16000	6.5 × 10 ⁻⁷	12
$[Tb_{10}(DBA)_6(OH)_4(H_2O)_5] \cdot (H_3O)_4$	9580	1 × 10-9	13
$[Zn(oba)(L)_{0.5}] \cdot dma$	9300	-	14
Eu-MOF/ALD-PPS	4366	5.4 × 10 ⁻⁶	15

Table S5 Comparison of reported MOF sensors for Fe³⁺ ion detection.

Fig. S12. (a) Emission spectra of JOU-25 in DMF solution in the presence of different organic solvents. (b) Emission spectra of JOU-25, JOU-25 + 15 organic solvents and JOU-25 + 15 solvents + NB in DMF/H₂O solution.

Fig. S13. Stability of JOU-25 after releasing NB.

Fig. S14. UV-Vis absorption spectra of NB and JOU-25, and emission spectrum of JOU-25.

Fig. S15. The LUMO and HOMO energy levels of H₃TCA and NACs.

Fig. S16. Emission quenching percentage of JOU-25 dispersion with different nitroaromatics.

MOFs	$K_{\rm SV}({\rm M}^{-1})$	Detection limit (M ⁻¹)	Quenching efficiency (%)	Ref.
FJU-35	1630000	-	43	16
FJU-36	913000	-	49	16
JOU-25	49803	2.41 × 10 ⁻⁶	90	This work
In/Eu-CBDA	16900	8.88 × 10 ⁻⁶	82	17
$[Cu(L)(I)]_2 \cdot 2DMF \cdot MeCN$	9500	6.6 × 10 ⁻⁶	40	18
[Cd(bipy)][HL] _n	9300	-	100	19
Ln-MOFs	3340	2.89 × 10 ⁻⁵	100	20
Cd-MOF	2700	2.54×10^{-3}	100	21

Table S6. Comparison of reported MOF sensors for NB detection.

Reference

1. Nandi, S.; Chakraborty, D.; Vaidhyanathan, R., A permanently porous single molecule H-bonded organic framework for selective CO_2 capture. *Chem. Commun.* 52 (2016) 7249-7252.

2. Sheldrick, G. M., Crystal structure refinement with SHELXL. *Acta. Crystallogr. C.* 71 (2015) 3-8.

3. Kim, H. C.; Huh, S.; Lee, D. N.; Kim, Y., Selective carbon dioxide sorption by a new breathing three-dimensional Zn-MOF with Lewis basic nitrogen-rich channels.

Dalton Trans. 47 (2018) 4820-4826.

4. Zhang, J.; Wu, J.; Tang, G.; Feng, J.; Luo, F.; Xu, B.; Zhang, C., Multiresponsive water-stable luminescent Cd coordination polymer for detection of TNP and Cu²⁺. *Sensor. Actuat. B-Chem.* 272 (2018) 166-174.

5. Peng, X. X.; Bao, G. M.; Zhong, Y. F.; He, J. X.; Zeng, L.; Yuan, H. Q., Highly selective detection of Cu(2+) in aqueous media based on Tb(3+)-functionalized metal-organic framework. *Spectrochim. Acta. A.* 240 (2020) 118621.

6. Liu, C.; Yan, B., A novel photofunctional hybrid material of pyrene functionalized metal-organic framework with conformation change for fluorescence sensing of Cu²⁺. *Sensor. Actuat. B-Chem.* 235 (2016) 541-546.

7. Senthilkumar, S.; Goswami, R.; Smith, V. J.; Bajaj, H. C.; Neogi, S., Pore wallfunctionalized luminescent Cd(II) framework for selective CO_2 adsorption, highly specific 2,4,6-trinitrophenol detection, and colorimetric sensing of Cu²⁺ ions. *ACS*. *Sustain. Chem. Eng.* 6 (2018) 10295-10306.

8. Zhao, J.; Wang, Y. N.; Dong, W. W.; Wu, Y. P.; Li, D. S.; Zhang, Q. C., A robust luminescent Tb(III)-MOF with lewis basic pyridyl dites for the highly sensitive detection of metal ions and small molecules. *Inorg. Chem.* 55 (2016) 3265-3271.

9. Guan, Q. L.; Han, C.; Bai, F. Y.; Liu, J.; Xing, Y. H.; Shi, Z.; Sun, L. X., Bismuth-MOF based on tetraphenylethylene derivative as a luminescent sensor with turn-off/on for application of Fe³⁺ detection in serum and bioimaging, as well as emissive spectra analysis by TRES. *Sensor. Actuat. B-Chem.* 325 (2020) 128767.

10. Yu, H.; Fan, M.; Liu, Q.; Su, Z.; Li, X.; Pan, Q.; Hu, X., Two highly water-stable imidazole-based Ln-MOFs for sensing $Fe(3+),Cr_2O_7(2-)/CrO4(2-)$ in a water environment. *Inorg. Chem.* 59 (2020) 2005-2010.

11. Zhang, Q.; Wang, J.; Kirillov, A. M.; Dou, W.; Xu, C.; Xu, C.; Yang, L.; Fang, R.; Liu, W., Multifunctional Ln-MOF luminescent probe for efficient sensing of Fe(3+), Ce(3+), and acetone. *ACS. Appl. Mater. Inter.* 10 (2018) 23976-23986.

12. He, Y.; Shi, L.; Wang, J.; Yan, J.; Chen, Y.; Wang, X.; Song, Y.; Han, G., UiO-66-NDC (1,4-naphthalenedicarboxilic acid) as a novel fluorescent probe for the selective detection of Fe³⁺. *J. Solid. State. Chem.* 285 (2020) 121206.

13. Chai, H. M.; Zhang, G. Q.; Jiao, C. X.; Ren, Y. X.; Gao, L. J., A multifunctional Tb-MOF detector for H_2O_2 , Fe(3+), $Cr_2O_7(2-)$, and TPA explosive featuring coexistence of binuclear and tetranuclear clusters. *ACS. Omega.* 5 (2020) 33039-33046. 14. Chand, S.; Pal, A.; Pal, S. C.; Das, M. C., A trifunctional luminescent 3D microporous MOF with potential for CO_2 separation, selective sensing of a metal ion, and recognition of a small organic molecule. *Eur. J. Inorg. Chem.* 2018 (2018) 2785-2792.

15. Yu, Y.; Pan, D.; Qiu, S.; Ren, L.; Huang, S.; Liu, R.; Wang, L.; Wang, H., Polyphenylene sulfide paper-based sensor modified by Eu-MOF for efficient detection of Fe³⁺. *React. Funct. Polym.* 165 (2021) 104954.

16. Liu, L.; Yao, Z.; Ye, Y.; Chen, L.; Lin, Q.; Yang, Y.; Zhang, Z.; Xiang, S., Robustness, selective gas separation, and nitrobenzene sensing on two isomers of cadmium metal-organic frameworks containing various metal-O-metal chains. *Inorg. Chem. 2018*, 57 (20), 12961-12968.

17. Zhang, Y.; Ying, Y.; Feng, M.; Wu, L.; Wang, D.; Li, C., Two isostructural Ln^{3+} -based heterometallic MOFs for the detection of nitro-aromatics and $Cr_2O_7^{2-}$. *New. J. Chem.* 44 (2020) 12748-12754.

18. Sajal Khatua, S. G., Soumava Biswas,; Kapil Tomar, H. S. J., Sanjit Konar, A stable multi-responsive luminescent MOF for colorimetric detection of small molecules in selective and reversible manner. *Chem. Mater.* 27 (2015) 5349-5360.

19. Kan, W.-Q.; Wen, S.-Z., A fluorescent coordination polymer for selective sensing of hazardous nitrobenzene and dichromate anion. *Dyes. Pigments.* 139 (2017) 372-380. 20. Du, Y.; Yang, H.; Liu, R.; Shao, C.; Yang, L., A multi-responsive chemosensor for highly sensitive and selective detection of Fe(3+), Cu(2+), Cr2O7(2-) and nitrobenzene based on a luminescent lanthanide metal-organic framework. *Dalton. Trans.* 2020, 49 (37), 13003-13016.

21. Yan, Y.-T.; Liu, J.; Yang, G.-P.; Zhang, F.; Fan, Y.-K.; Zhang, W.-Y.; Wang, Y.-Y., Highly selective luminescence sensing for the detection of nitrobenzene and Fe³⁺ by new Cd(ii)-based MOFs. *CrystEngComm* 20 (2018) 477-486.